跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/08 14:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳致融
研究生(外文):Chih-Jung Chen
論文名稱:全固態式鋰離子二次薄膜電池製作及其特性分析
論文名稱(外文):Fabrication and Characteristics of All Solid-state Lithium Ion Thin Film Batteries
指導教授:劉如熹劉如熹引用關係
口試委員:梁文傑張家欽劉埃森何麗貞
口試日期:2012-05-04
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:125
中文關鍵詞:薄膜電池鋰鈷氧薄膜鋰磷氧氮化物薄膜固態電解質
外文關鍵詞:thin film batteryLiCoO2 thin filmLiPON thin filmsolid electrolyte
相關次數:
  • 被引用被引用:0
  • 點閱點閱:303
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
於我們日常生活中電子產品扮演重要角色,而現今隨著無線裝置之使用量不斷劇增,可穩定提供電源之儲能材料被視為發展重點,其中全固態薄膜電池具高能量密度與高循環壽命表現之優點,而深具取代傳統鋰離子二次電池之潛力。
本研究主要為製作與分析全固態式鋰離子二次薄膜電池,其中以射頻磁控濺鍍技術製備鋰鈷氧化物(lithium cobalt oxide; LiCoO2)陰極材料與鋰磷氧氮化物(lithium phosphorous oxynitride; LiPON)固態電解質,依序沉積於具白金電流收集器之矽基板表面,進而再以熱蒸鍍技術沉積鋰金屬陽極薄膜即可完成電池組裝。
本研究乃探討不同濺鍍環境(濺鍍功率、工作壓力與氣體比例流速)與熱處理條件(退火溫度與退火時間)對於薄膜材料之影響,並建立其最佳電化學表現。其中以粉末X光繞射儀(X-ray diffraction; XRD)鑑定樣品之晶相及其結晶度;以掃描式電子顯微鏡(scanning electron microscope; SEM)觀測樣品表面形貌與其鍍率;並以X光電子能譜(X-ray Photoelectron Spectroscopy; XPS)與同步輻射產生之X光吸收光譜(X-ray absorption; XAS)分別量測樣品之配位環境與其氧化價數;此外利用交流阻抗測試計算電解質之離子導電度,並配合充放電儀研究電極材料之電容量與循環表現。經上述鑑定發現退火後之LiCoO2薄膜為(101)與(104)晶面優選方向,而具鋰離子於其中擴散不受氧離子層阻擋之優勢,此外於75 W與5 mtorr條件下製備之LiPON薄膜具較高含量之三重鍵結氮,故其離子導電度可達1.38×10-6 S/cm。

Electronic devices play important roles in our daily life and the number of wireless devices is nowadays rapidly growing. Therefore, developing stable energy-storage materials is a significant task. Because of high energy density and long cycle life in all-solid-state thin film batteries, they can serve as the major candidates to replace the conventional lithium ion batteries.
The purposes of this research are to fabricate and analyze the all-solid-state lithium ion thin film batteries. First, we deposited lithium cobalt oxide (LiCoO2) cathode material and lithium phosphorus oxynitride (LiPON) solid electrolyte on Si wafer with Pt current collector by RF magnetic sputtering technique. And then we prepared lithium metal anode material by thermal evaporation to complete the fabrication of the batteries.
The different sputtering parameters (power, pressure, and gas flow rate ratio) and the different annealing conditions (temperature and time) were revealed to discuss the effects on the thin film materials, and set up the best electrochemical performance of them. The crystal structure and crystallization were characterized by X-ray diffraction (XRD). The morphology and deposition rate were analyzed by scanning electron microscope (SEM). X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS) were used to observe the oxidation states and the coordination conditions. The ion conductivity of solid electrolyte was calculated by performing the electrochemical impedance spectroscopy (EIS), and the capacity and the cycle life of electrodes were measured by the capacity tester. Under these characterizations could discover that the LiCoO2 thin film was (101) and (104) preferred orientation after post-annealing. As a result, it could avoid the diffusion of lithium ions from the oxygen layer blocking. In addition, there was more triply coordinated nitrogen in the LiPON thin film under the 75 W and 5 mtorr fabricating factors. Its ionic conductivity could reach 1.38×10-6 S/cm.

口試委員會審定書 i
謝誌 ii
摘要 iii
Abstract iv
總目錄 vi
圖目錄 ix
表目錄 xvi
第一章 緒論 1
1.1 鋰離子二次電池之發展歷史與充放電機制 2
1.2 全固態薄膜電池之發展歷史 5
1.3 陰極材料 12
1.3.1 鋰鈷氧化物(LiCoO2) 13
1.3.2 鋰錳氧化物(LiMn2O4) 15
1.3.3 鋰鎳氧化物(LiNiO2) 18
1.3.4 磷酸鋰鐵(LiFePO4) 19
1.3.5 鋰鈷氧化物(LiCoO2)陰極薄膜 20
1.4 電解質 23
1.4.1 固態電解質介面(solid electrolyte interface; SEI) 23
1.4.2 液態電解質 25
1.4.3 高分子電解質 27
1.4.4 無機固態電解質 28
1.4.5 鋰磷氧氮化物(LiPON)固態電解質薄膜 29
1.5 本研究動機與新穎性 30
第二章 實驗步驟與儀器分析原理 31
2.1 全固態薄膜電池之材料製備 31
2.1.1 基材(substrate) 31
2.1.2 濺鍍機台 32
2.1.3 快速熱退火爐(Rapid Thermal Annealing; RTA) 37
2.1.4 LiCoO2陰極薄膜之製備 38
2.1.5 LiPON固態電解質薄膜之製備 39
2.1.6 熱蒸鍍機台(Thermal evaporator) 40
2.1.7 鋰金屬陽極薄膜之製備 41
2.2 全固態薄膜電池之材料鑑定 42
2.2.1 鈕扣電池(coin cell)之組裝 42
2.2.2全固態薄膜電池之組裝 43
2.2.3 掃描式電子顯微鏡(scanning electron microscope; SEM ) 46
2.2.4 X 光繞射儀(X-ray diffraction; XRD) 46
2.2.5 X射線光電子能譜儀(X-ray photoelectron spectroscopy; XPS ) 48
2.2.6 X光吸收光譜(X-ray Absorption Spectroscopy; XAS ) 49
2.2.7 充放電測試儀 52
第三章 結果與討論 53
3.1 LiCoO2陰極薄膜 53
3.1.1 不同退火溫度對於LiCoO2薄膜之影響 53
3.1.2 不同退火時間對於LiCoO2薄膜之影響 57
3.1.3 不同工作壓力對於LiCoO2薄膜之影響 65
3.1.4 不同氬氣相對氧氣流速對於LiCoO2薄膜之影響 72
3.2 LiPON固態電解質薄膜 82
3.2.1 不同工作壓力對於LiPON薄膜之影響 82
3.2.2 不同濺鍍功率對於 LiPON 薄膜之影響 102
3.2.3 LiPON 固態電解質薄膜之最佳製程參數 117
3.3 薄膜鋰離子電池組裝 119
第四章 結論 121
參考文獻 122


1.http://www.epochtimes.com/b5/9/10/2/n2675238.htm
2.Hajek, J. French Patent 1949, 8, 10.
3.Whittingham, M. S. Science 1976, 192, 1126.
4.Quartarone, E.; Mustarelli, P. Chem. Soc. Rev. 2011, 40, 2525.
5.Armand, M.; Murphy, D. W.; Broadhead, J.; Steele, B. C. H. Materials for Advanced Batteries, Plenum Press, New York 1980.
6.Nagaura, T.; Tozawa, K. Prog. Batt. Solar Cells, 1990, 9, 209.
7.Xu, K. Chem. Rev. 2004, 104, 4303.
8.Lee, S. W.; Yabuuchi, N.; Gallant, B. M.; Chen, S.; Kim, B.-S.; Hammond, P. T.; Shao-Horn, Y. Nat. Nano. 2010, 5, 531.
9.Kanehori, K.; Matsumoto, K.; Miyauchi, K.; Kudo, T. Solid St. Ion. 1983, 9–10, Part 2, 1445.
10.Bates, J. B.; Dudney, N. J.; Gruzalski, G. R.; Zuhr, R. A.; Choudhury, A.; Luck, C. F.; Robertson, J. D. J. Power Source 1993, 43, 103.
11.Wang, B.; Bates, J. B.; Hart, F. X.; Sales, B. C.; Zuhr, R. A.; Robertson, J. D. J. Electrochem. Soc. 1996, 143, 3203.
12.Raffaelle, R. P.; Harris, J. D.; Hehemann, D.; Scheiman, D.; Rybicki, G.; Hepp, A. F. J. Power Source 2000, 89, 52.
13.Song, S. W.; Hong, S. J.; Park, H. Y.; Lim, Y. C.; Lee, K. C. Electrochem. Solid St. 2009, 12, A159.
14.Song, S.-W.; Choi, H.; Park, H. Y.; Park, G. B.; Lee, K. C.; Lee, H.-J. J. Power Source 2010, 195, 8275.
15.Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B. Mater. Res. Bull. 1980, 15, 783.
16.Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B. Solid St. Ion. 1981, 3–4, 171.
17.Garcia, B.; Farcy, J.; Pereira-Ramos, J. P.; Perichon, J.; Baffier, N. J. Power Source 1995, 54, 373.
18.Manthiram, A.; Kim, J. Chem. Mat. 1998, 10, 2895.
19.Wickham, D. G.; Croft, W. J. J. Phys. Chem. Solids 1958, 7, 351.
20.Thackeray, M. M.; David, W. I. F.; Bruce, P. G.; Goodenough, J. B. Mater. Res. Bull. 1983, 18, 461.
21.Wakihara, M. Mat. Sci. Eng. R 2001, 33, 109.
22.Dyer, L. D.; Borie, B. S.; Smith, G. P. J. Am. Chem. Soc. 1954, 76, 1499.
23.Whittingham, M. S. Chem. Rev. 2004, 104, 4271.
24.Padhi, A. K.; Nanjundaswamy, K. S.; Masquelier, C.; Okada, S.; Goodenough, J. B. J. Electrochem. Soc. 1997, 144, 1609.
25.Tarascon, J. M.; Armand, M. Nature 2001, 414, 359.
26.Bates, J. B.; Dudney, N. J.; Neudecker, B. J.; Hart, F. X.; Jun, H. P.; Hackney, S. A. J. Electrochem. Soc. 2000, 147, 59.
27.Goodenough, J. B.; Kim, Y. Chem. Mat. 2010, 22, 587.
28.Xue, Z.-M.; Zhao, J.-F.; Ding, J.; Chen, C.-H. J. Power Source 2010, 195, 853.
29.Wright, P. V. British Polymer Journal 1975, 7, 319.
30.Knauth, P. Solid St. Ion. 2009, 180, 911.
31.杜正恭,儀器總覽,行政院國家科學委員會精密儀器發展中心,民87。
32.Via, G. H.; Sinfelt, J. H.; Lytle, F. W. The J. Chem. Phys. 1979, 71, 690.
33.Fay, M. J.; Proctor, A.; Hoffmann, D. P.; Hercules, D. M. Analytical Chem. 1988, 60, 1225A.
34.Kim, H.-K.; Yoon, Y. S. J. Vac. Sci. & Tech. A: Vacuum, Surfaces, and Films 2004, 22, 1182.
35.Park, H.; Nam, S.; Lim, Y.; Choi, K.; Lee, K.; Park, G.; Kim, J.; Kim, H.; Cho, S. Electrochim. Acta 2007, 52, 2062.
36.Yoon, Y. S.; Lee, S. H.; Cho, S. B.; Nam, S. C. J. Electrochem. Soc. 2011, 158, A1313.
37.Liao, C.-L.; Lee, Y.-H.; Fung, K.-Z. J. Alloy Compd. 2007, 436, 303.
38.Kim, W.-S. J. Power Source 2004, 134, 103.
39.Park, H.; Nam, S.; Lim, Y.; Choi, K.; Lee, K.; Park, G.; Kim, H.; Cho, S. Korean Jour.Chem. Eng. 2006, 23, 832.
40.Perkins, J. D.; Bahn, C. S.; McGraw, J. M.; Parilla, P. A.; Ginley, D. S. J. Electrochem. Soc. 2001, 148, A1302.
41.Chiu, K. F.; Chen, C. C.; Lin, K. M.; Lin, H. C.; Lo, C. C.; Ho, W. H.; Jiang, C. S. Vacuum 2010, 84, 1296.
42.Hu, Z. Q.; Xie, K.; Wei, D.; Ullah, N. J. Mater. Sci. 2011, 46, 7588.
43.Hu, Z.; Xie, K.; Wei, D.; Ullah, N. J. Mater. Sci. 2011, 46, 7588.
44.Bunker, B. C.; Tallant, D. R.; Balfe, C. A.; Kirkpatrick, R. J.; Turner, G. L.; Reidmeyer, M. R. J. Am. Ceram. Soc. 1987, 70, 675.
45.Hu, Z. Q.; Li, D. Z.; Xie, K. Bull. Mat. Sci. 2008, 31, 681.
46.Roh, N.-S.; Lee, S.-D.; Kwon, H.-S. Scripta Materialia 1999, 42, 43.
47.Hamon, Y.; Douard, A.; Sabary, F.; Marcel, C.; Vinatier, P.; Pecquenard, B.; Levasseur, A. Solid St. Ion. 2006, 177, 257.
48.Nimisha, C. S.; Rao, K. Y.; Venkatesh, G.; Rao, G. M.; Munichandraiah, N. Thin Solid Films 2011, 519, 3401.
49.Bates, J. B.; Dudney, N. J.; Lubben, D. C.; Gruzalski, G. R.; Kwak, B. S.; Yu, X.; Zuhr, R. A. J. Power Source 1995, 54, 58.
50.Nimisha, C. S.; Rao, G. M.; Munichandraiah, N.; Natarajan, G.; Cameron, D. C. Solid St. Ion. 2011, 185, 47.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top