跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2025/01/21 20:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蘇聖淵
研究生(外文):Sheng-Yuan Su
論文名稱:建立快速比色法與即時雙重迴路恆溫增幅反應偵測病毒核酸
論文名稱(外文):Development of rapid colorimetric assay and real-time duplex LAMP method to detect viral nucleic acid
指導教授:李君男李君男引用關係
口試委員:張煥宗高全良張淑媛
口試日期:2012-07-10
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:醫學檢驗暨生物技術學研究所
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:85
中文關鍵詞:迴路恆溫增幅反應快速比色法膠體金溶液解離溫度
外文關鍵詞:LAMPrapid colorimetric assaycolloidal goldmelting curve
相關次數:
  • 被引用被引用:0
  • 點閱點閱:311
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
迴路恆溫增幅反應(loop-mediated isothermal amplification, LAMP) 由Notomi等人所發展,係利用4-6個特異性引子辨識並結合至目標核酸序列,反覆地進行引子延展與置換作用,於短時間內大量增幅核酸片段。本研究期以此技術發展出快速比色法(rapid colorimetric assay)與即時雙重迴路恆溫增幅反應分析法(real-time duplex LAMP, dLAMP)來偵測樣本中的病毒核酸,供血液篩檢、臨床診斷與監控、流行病學調查等之應用。
快速比色法係以人類巨細胞病毒UL97基因序列為偵測目標,HCMV-LAMP反應條件經最適化(Optimization)與重複測試,每個反應可偵測的最低複本數為30。而呈色原理則利用溶液中鹽離子濃度,會引發金奈米粒子不等程度之聚集;當鹽分越高,金奈米粒子聚集越明顯而溶液顏色將由紅色轉變為藍色。於HCMV-LAMP反應完成後加入膠體金溶液呈色,可觀察到溶液顏色隨增幅產物濃度遞增而呈現藍、紫、紅等不同色澤。以影像記錄、紫外光/可見光分光光譜儀測量雙波長(OD650 / 520)動力學變化,可知焦磷酸鎂與DNA產物的數量會減緩金奈米粒子聚集速度。本研究亦嘗試建立即時雙重迴路恆溫增幅反應,於單一試管內同步偵測B型肝炎病毒(HBV)與C型肝炎病毒(HCV)核酸。經重複測試,每個反應可偵測的HBV最低複本數為50、HCV則為60。該增幅產物經解離曲線分析,可知HBV與HCV二者解離溫度(melting temperature, Tm)不同,且再現性良好;與限制酶切割試驗(BspMI與Tth111I)結果相符。進一步分析臺灣地區常見的HBV基因型及HCV亞型病毒株等dLAMP增幅產物之Tm值,以建立信賴區間(confidence interval) 做為鑑別HBV及HCV之依據;其中HBV的信賴區間為85.49 ± 1.34°C、HCV則為88.90 ± 0.81°C。後續模擬臨床實驗室之檢驗流程,自國立臺灣大學附設醫院收集已確診HBV或HCV感染者之臨床檢體進行dLAMP與信賴區間之測試。結果顯示dLAMP陽性預測率為88 %,而Tm值信賴區間之鑑別正確率為88.64 %;其中HBV鑑別正確率為83.72 %、HCV 鑑別正確率為93.33 %。
快速比色法的特異性及靈敏度與現有的比濁法相近,增幅效果主要取決於HCMV-LAMP引子對之設計優劣。以化學還原法合成膠體金溶液,不僅成本低廉,保存也相當容易。採取肉眼觀察顏色變化,適合用於快速篩檢。而雙重迴路恆溫增幅反應,除了即時偵測樣本中病毒核酸,其增幅產物經解離溫度分析亦可快速地鑑別HBV與HCV。但dLAMP的偵測靈敏度與正確率(尤其是HBV的偵測)不夠理想,還需要諸多努力以改善其效能。


Loop-mediated isothermal amplification (LAMP) was established by Notomi et al. (2000). It uses 4-6 specific primers to recognize the target gene sequence and rapidly amplify under isothermal condition. Using this technique, we established a rapid colorimetric assay and a real-time duplex LAMP (dLAMP) method for viral nucleic acid detection. We anticipated that these two assays could be applied in blood screening, clinical diagnosis, and epidemiological investigation in the future.
In the rapid colorimetric assay, we first optimized and validated the HCMV-LAMP reaction, the viral detection limit was about 30 copies per reaction. Furthermore, we mixed colloidal gold with LAMP products. Gold nanoparticles (AuNPs) became accumulated and solution color changed from red to blue quickly in HCMV-LAMP negative situation. But in positive situation, the solution color kept in red more longer. This phenomenon might be based on decreasing the ionic strength along with increasing DNA numbers of the solution after the HCMV-LAMP reaction. For the dLAMP method, HBV and HCV were detected simultaneously. The viral detection limits were 50 copies for HBV and 60 copies for HCV. In viral identification, we first collected clinical samples containing HBV or HCV strains of different genotypes or subtypes, respectively. By post-dLAMP melting curve analysis, HBV and HCV had different and non-overlapped Tm confidence intervals as 85.49±1.34°C and 88.90±0.81°C, respectively. We also tested the possibility of clinical application of the dLAMP and Tm analysis in detection and differentiation of HBV and HCV. The positive predictive value (PPV) of dLAMP method was 88 %. The accuracy of Tm differentiation of HBV and HCV was 88.64 %, that of HBV was 83.72 %, HCV 93.33 %.
In conclusion, the specificity and sensitivity of colorimetric assay were similar to those of turbidimetry. Reading colors by naked-eye was simple and easy. This end-point assay is suitable for rapid qualitative analysis. However, the duplex LAMP detected the viral nucleic acid in real-time manner and differentiated HBV and HCV conveniently by melting temperature analysis. But the efficiency and accuracy rate were not satisfactory, and further improvement is required.

口試委員審定書 (i)
中文摘要 (ii)
英文摘要 (iv)

第一章 緒論(1)
第一節 人類巨細胞病毒(HCMV)(1)
一、病毒基本構造(1)
二、病毒複製週期(1)
三、傳播方式與流行病學(2)
四、臨床病徵(3)
五、治療藥物(3)
六、實驗室診斷(4)
第二節 肝炎病毒(hepatitis viruses)(5)
一、B型肝炎病毒(5)
二、C型肝炎病毒(5)
三、臨床病徵(6)
四、臨床預防與治療藥物(6)
五、實驗室診斷(7)
第三節 迴路恆溫增幅反應(7)
一、反應試劑(8)
二、增幅反應(8)
三、增幅產物偵測方法(9)
第四節 金奈米粒子簡介(10)
第五節 研究動機與目的(10)

第二章 材料與方法(11)
第一節 細胞與病毒培養(11)
一、細胞培養(11)
二、病毒培養(11)
第二節 核酸萃取與確認(12)
一、核酸萃取(12)
二、聚合酶連鎖反應(13)
三、洋菜膠電泳(14)
第三節 質體標準品製作(14)
一、增幅目標序列(15)
二、轉型作用(16)
三、質體萃取(17)
四、限制酶切割試驗(17)
五、核酸定序(18)
第四節 HCMV迴路恆溫增幅反應(20)
一、設計LAMP引子對(20)
二、反應條件最適化(21)
三、偵測靈敏度與特異性(22)
第五節 金奈米粒子比色法(22)
一、金奈米粒子合成(22)
二、快速比色法(23)
第六節 雙重迴路恆溫增幅反應(duplex LAMP)(24)
一、統合反應條件(24)
二、解離曲線分析(24)
三、限制酶切割試驗(25)
四、臨床樣本收集與處理(25)
五、統計分析(26)

第三章 結果(27)
第一節 快速比色法之建立(27)
一、病毒培養與核酸萃取(27)
二、質體標準品之建立(27)
三、HCMV-LAMP(28)
四、合成金奈米粒子與呈色(29)
第二節 雙重迴路恆溫增幅反應(30)
一、反應條件最適化(30)
二、解離溫度預測與分析(31)
三、限制酶切割試驗(31)
四、建立Tm值信賴區間(31)
五、臨床檢體測試(32)

第四章 討論(33)
參考文獻(37)
圖表(48)
附錄(76)

1.Adler S. P., Chandrika T., Lawrence L., Baggett J. Cytomegalovirus infections in neonates due to blood transfusions. Pediatr. Infect. Dis. 1983; 2: 114–118.
2.Adler S. P., Starr S. E., Plotkin S. A., et al. Immunity induced by primary human cytomegalovirus infection protects against secondary infection among women of childbearing age. J. Infect. Dis. 1995; 171: 26–32.
3.Ahlfors K., Ivarsson S. A. Cytomegalovirus in breast milk of Swedish milk donors. Scand. J. Infect. Dis. 1985; 17:11.
4.Aldrete J. S., Sterlin W. A., Hathway B. M., Morgan J. M., Diethelm A. G. Gastrointestinal and hepatic complications affecting patients with renal allografts. Am. J. Surg. 1975; 129: 115–124.
5.Anders D. G.., McCue L. A. The human cytomegalovirus genes and proteins required for DNA synthesis. Intervirology 1996; 39: 378–388.
6.Baldanti F., Revello M. G., Percivalle E., Gerna G. Use of the human cytomegalovirus (HCMV) antigenemia assay for diagnosis and monitoring of HCMV infections and detection of antiviral drug resistance in the immunocompromised. J. Clin. Virol. 1998; 11: 51–60.
7.Baldick C. J. Jr, Shenk T. Proteins associated with purified human cytomegalovirus particles. J. Virol. 1996; 70: 6097–6105.
8.Bale J. F. Jr, O’Neil M. E., Hart M. N., Harris J. D., Stinski M. F. Human cytomegalovirus nucleic acids in tissues from congenitally infected infants. Pediatr. Neurol. 1989; 5: 216–220.
9.Baptista P., et al. Gold nanoparticles for the development of clinical diagnosis methods. Anal. Bioanal. Chem. 2008; 391: 943-950.
10.Boeckh M., Gooley T. A., Myerson D., Cunningham T., Schoch G., Bowden R. A. Cytomegalovirus pp65 antigenemia-guided early treatment with ganciclovir versus ganciclovir at engraftment after allogeneic marrow transplantation: a randomized double-blind study. Blood. 1996; 88: 4063–4071.
11.Bold S., Ohlin M., Garten W., Radsak K. Structural domains involved in human cytomegalovirus glycoprotein B-mediated cell–cell fusion. J. Gen. Virol. 1996; 77: 2297–2302.
12.Boldogh I., AbuBakar S., Albrecht T. Activation of proto-oncogenes: an immediate early event in human cytomegalovirus infection. Science. 1990; 247: 561–564.
13.Boldogh I., AbuBakar S., Deng C. Z., Albrecht T. Transcriptional activation of cellular oncogenes fos, jun, and myc by human cytomegalovirus. J. Virol. 1991a; 65: 1568–1571.
14.Bourne N., ZakBernstein, D. I. ed. London: Animal models for cytomegalovirus infection: guinea-pig CMV. In Handbook of Animal Models of Infection Academic Press 1999
15.Boyle K. A., Pietropaolo R. L., Compton T. Engagement of the cellular receptor for glycoprotein B of human cytomegalovirus activates the interferon-responsive pathway. Mol. Cell Biol. 1999; 19: 3607–3713.
16.Britt W. J. Neutralizing antibodies detect a disulfide-linked glycoprotein complex within the envelope of human cytomegalovirus. Virology. 1984; 135: 369–378.
17.Cambridge University Press: Human Herpesviruses Biology, Therapy, and Immunoprophylaxis. 2007. ISBN-13: 978-0-521-82714-0
18.Cha T., Tom E., Kembel G. W., Duke G. M., Mocarski E. S., Spaete R. R. Human cytomegalovirus clinical isolates carry at least 19 genes not found in laboratory strains. J. Virol. 1996; 70: 78–83.
19.Chandler S. H., Holmes K. K., Wentworth B. B. et al. The epidemiology of cytomegaloviral infection in women attending a sexually transmitted disease clinic. J. Infect. Dis. 1985; 152: 597–605.
20.Chen D.H., Jiang H., Lee M., Liu F., Zhou Z.H. Three-dimensional visualization of tegument/capsid interactions in the intact human cytomegalovirus. Virology. 1999; 260: 10–16.
21.Cohen J.I., Corey G..R. Cytomegalovirus infection in the normal host. Medicine (Baltimore). 1985; 64: 100-114.
22.Compton T., Nowlin D. M., Cooper N. R. Initiation of human cytomegalovirus infection requires initial interaction with cell surface heparan sulfate. Virology. 1993; 193: 834–841.
23.Deback C., Fillet A.M., Dhedin N., Barrou B., Varnous S., Najioullah F., Bricaire F., Agut H. Monitoring of human cytomegalovirus infection in immunosuppressed patients using real-time PCR on whole blood. J. Clin. Virol. 2007; 40: 173-179.
24.De Paschale M., Agrappi C., Manco M.T., Clerici P. Positive predictive value of anti-HCMV IgM as an index of primary infection. J. Virol. Methods. 2010; 168: 121-125.
25.Drew W. L., Sweet E. S., Miner R. C., Mocarski E. S. Multiple infections by cytomegalovirus in patients with acquired immunodeficiency syndrome: documentation by Southern blot hybridization. J. Infect. Dis. 1984; 150: 952–953.
26.Drew W. L. Cytomegalovirus infection in patients with AIDS. Clin. Infect. Dis. 1992; 14: 608–615.
27.Dunn W., Chou C., Li H., et al. Functional profiling of human cytomegalovirus genome. Proc. Natl Acad. Sci. USA. 2003; 100: 14223–14228.
28.Dworsky M., Yow M., Stagno S., Pass R. F., Alford C. Cytomegalovirus infection of breast milk and transmission in infancy. Pediatrics. 1983b; 72: 295–299.
29.Dworsky M., Lakeman A., Stagno S. Cytomegalovirus transmission within a family. Pediatr. Infect. Dis. 1984; 3: 236–238.
30.Eiko Fukushima, Kei Ishibashi, Hisatoshi Kaneko, et al. Identification of a highly conserved region in the human cytomegalovirus glycoprotein H gene and design of molecular diagnostic methods targeting the region. J. Virol Methods. 2008; 151: 55–60.
31.Emery V. C., Sabin C. A., Cope A. V., Gor D., Hassan-Walker A. F., Griffiths P. D. Application of viral-load kinetics to identify patients who develop cytomegalovirus disease after transplantation. Lancet. 2000; 355: 2032–2036.
32.Erice A., Holm M. A., Gill P. C., et al. Cytomegalovirus (CMV) antigenemia assay is more sensitive than shell vial cultures for rapid detection of CMV in polymorphonuclear blood leukocytes. J. Clin. Microbiol. 1992; 30: 2822–2825.
33.EvansGold, E. and Nankervis, G. A. (1982). Cytomegalovirus. In Viral Infections of Humans: Epidemiology and Control, 2nd ed, pp.167–186. New York: Plenum Press
34.Feire A. L., Koss H., Compton T. Cellular integrins function as entry receptors for human cytomegalovirus via a highly conserved disintegrin-like domain. Proc. Natl Acad. Sci. USA. 2004; 101: 15470–15475.
35.Fowler K. B., Stagno S., Pass R. F. Maternal age and congenital cytomegalovirus infection: screening of two diverse newborn populations, 1980–1990. J. Infect. Dis. 1993; 168: 552–556.
36.Gentry B.G., Kamil J.P., Coen D.M., Zemlicka J., Drach J.C. Stereoselective phosphorylation of cyclopropavir by pUL97 and competitive inhibition by maribavir. Antimicrob Agents Chemother. 2010;54:3093-3098.
37.Gerna G., Zipeto D., Parea M., et al. Monitoring of human cytomegalovirus infections and ganciclovir treatment in heart transplant recipients by determination of viremia, antigenemia, and DNAemia. J. Infect. Dis. 1991; 164: 488–498.
38.Gokahmetoğlu S, Yağmur G, Mutlu Sarıguzel F, Deniz E. Investigation of cytomegalovirus positivity in the peripheral blood samples of risky patients by shell-vial cell culture, antigenemia test and real-time polymerase chain reaction. Mikrobiyol Bul. 2011; 45: 288-295.
39.Goto M., Honda E., Ogura A., Nomoto A., Hanaki K. Colorimetric detection of loop-mediated isothermal amplification reaction by using hydroxy naphthol blue. BioTechniques 2009; 46:167-172.
40.Grundy J. E., McKeating J. A., Griffiths P. D. Cytomegalovirus strain AD169 binds beta 2 microglobulin in vitro after release from cells. J. Gen. Virol. 1987a; 68: 777–784.
41.Grundy J. E., McKeating J. A., Ward P. J., Sanderson A. R., Griffiths P. D. Beta 2 microglobulin enhances the infectivity of cytomegalovirus and when bound to the virus enables class Ⅰ HLA molecules to be used as a virus receptor J. Gen. Virol. 1987b; 68: 793–803.
42.Hamprecht K., Vochem M., Baumeister A., Boniek M., Speer C. P., Jahn G. Detection of cytomegaloviral DNA in human milk cells and cell free milk whey by nested PCR. J. Virol. Method. 1998; 70: 167–176.
43.Hamzeh F. M., Lietman P. S., Gibson W., Hayward G. S. Identification of the lytic origin of DNA replication in human cytomegalovirus by a novel approach utilizing ganciclovir-induced chain termination. J. Virol. 1990; 64: 6184–6195.
44.Hayashi M. L., Blankenship C., Shenk T. Human cytomegalovirus UL69 protein is required for efficient accumulation of infected cells in the G1 phase of the cell cycle. Proc. Natl Acad. Sci. USA. 2000; 97: 2692–2696.
45.Hosenpud J. D. Coronary artery disease after heart transplantation and its relation to cytomegalovirus. Am. Heart J. 1999; 138: 469–472.
46.Hsieh C. Y., You S. L., Kao C. L., Chen C. J. Reproductive and infectious risk factors for invasive cervical cancer in Taiwan. Anticancer Res. 1999; 19: 4495–4500.
47.Jonjic S., Pavic I., Polic B., Crnkovic I., Lucin P., Koszinowski U. H. Antibodies are not essential for the resolution of primary cytomegalovirus infection but limit dissemination of recurrent virus. J. Exp. Med. 1994; 179: 1713–1717.
48.Johnson R. A., Wang X., Ma X. L., Huong S. M., Huang E. S. Human cytomegalovirus upregulates the phosphatidylinositol 3-kinase (PI3-K) pathway: inhibition of PI3-K activity inhibits replication and virus-induced signaling. J. Virol. 2001; 75: 6022–6032.
49.Jung C., Chung J.W., Kim U.O., Kim M.H., Park H.G.. Real-time colorimetric detection of target DNA using isothermal target and signaling probe amplification and gold nanoparticle cross-linking assay. Biosens Bioelectron. 2011; 15: 1953-1958.
50.Kim J.U., Cha C.H., An H.K. Multiplex Real-Time PCR Assay and Melting Curve Analysis for Identifying Mycobacterium tuberculosis Complex and Nontuberculous Mycobacteria. J Clin. Microbiol. 2012; 50: 483-487.
51.Kimura Y., de Hoon M.J., Aoki S., Ishizu Y., Kawai Y. et al., Optimization of turn-back primers in isothermal amplification. Nucleic Acids Res. 2011;39:e59.
52.Klages S., Ruger B., Jahn G. Multiplicity dependent expression of the predominant phosphoprotein pp65 of human cytomegalovirus. Virus Res. 1989; 12: 159–168.
53.Kowalik T. F., Wing B., Haskill J. S., Azizkhan J. C., Baldwin A. S. Jr, Huang E. S. Multiple mechanisms are implicated in the regulation of NF-kappa B activity during human cytomegalovirus infection. Proc. Natl Acad. Sci. 1993; 90: 1107–1111.
54.Krech U., Tobin J. A collaborative study of cytomegalovirus antibodies in mothers and young children in 19 countries. Bull. WHO. 1981; 59: 605–610.
55.Kuo G., Choo Q.L., Alter H.J., Gitnick G.L., Redeker A.G., Purcell R.H., Miyamura T., Dienstag J.L., Alter M.J., Stevens C.E. An assay for circulating antibodies to a major etiologic virus of human non-A, non-B hepatitis. Science. 1989 ;244:362-364.
56.Kurath S, Halwachs-Baumann G, Muller W, Resch B. Transmission of cytomegalovirus via breast milk to the prematurely born infant: a systematic review. Clin Microbiol Infect. 2010; 16: 1172-1178.
57.Larsson S., Soderberg-Naucler C., Wang F. Z., Moller E. Cytomegalovirus DNA can be detected in peripheral blood mononuclear cells from all seropositive and most seronegative healthy blood donors over time. Transfusion. 1998; 38: 271–278.
58.Liapis H., Storch G. A., Hill D. A., Rueda J., Brennan D. C. CMV infection of the renal allograft is much more common than the pathology indicates: a retrospective analysis of qualitative and quantitative buffy coat CMV-PCR, renal biopsy pathology and tissue CMV-PCR. Nephrol. Dial. Transpl. 2003; 18: 397–402.
59.Lilleri D., Baldanti F., Gatti M., Rovida F., Dossena L., DeGrazia S., Torsellini M., Gerna G.. Clinically-based determination of safe DNAemia cutoff levels for preemptive therapy or human cytomegalovirus infections in solid organ and hematopoietic stem cell transplant recipients. J. Med. Virol. 2004; 73: 412-418.
60.Liu B., Stinski M. F. Human cytomegalovirus contains a tegument protein that enhances transcription from promoters with upstream ATF and AP-1 cis-acting elements. J. Virol. 1992; 66: 4434–4444.
61.Lu S. C., Chin L. T., Wu F. M., et al. Seroprevalence of CMV antibodies in a blood donor population and premature neonates in the south-central Taiwan. Kaohsiung J. Med. Sci. 1999; 15: 603–610.
62.Mattes F. M., Laughlin J. E., Emery V. C., Clark D. A., Griffiths P. D. Histopathological detection of owl’s eye inclusions is still specific for cytomegalovirus in the era of human herpesviruses 6 and 7 J. Clin. Pathol. 2000; 53: 612–614.
63.Melnick M, Abichaker G, Htet K, Sedghizadeh P, Jaskoll T. Small molecule inhibitors of the host cell COX/ AREG/ EGFR/ ERK pathway attenuate cytomegalovirus-induced pathogenesis. Exp Mol Pathol. 2011; 91: 400-410.
64.Mendez J., Espy M., Smith T. F., Wilson J., Wiesner R., Paya C. V. Clinical significance of viral load in the diagnosis of cytomegalovirus disease after liver transplantation. Transplantation. 1998; 65: 1477–1481.
65.Mori Y, Nagamine K, Tomita N, Notomi T. Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation. Biochem. Biophys. Res. Commun. 2001; 289: 150-154.
66.Mori Y, Kitao M, Tomita N, Notomi T. Real-time turbidimetry of LAMP reaction for quantifying template DNA. J. Biochem. Biophys. Methods. 2004; 59: 145-157.
67.Nakamura N., Fukuda T., Nonen S., Hashimoto K., Azuma J., Gemma N. Simple and accurate determination of CYP2D6 gene copy number by a loop-mediated isothermal amplification method and an electrochemical DNA chip. Clinica Chimica Acta. 2010; 411: 568–573.
68.Notomi T., Okayama H., Masubuchi H., Yonekawa T. Watanabe K., Amino N., Hase T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Research. 2000;28:e63
69.Nagamine K., Hase T. Notomi T. Accelerated reaction by loop-mediated isothermal amplification using loop primers. Molecular and Cellular Probes. 2002; 16: 223-229.
70.Parida1 M., Sannarangaiah S., Paban Kumar Dash, Rao P.V.L.and Morita K. Loop mediated isothermal amplification (LAMP): a new generation of innovative gene amplification technique; perspectives in clinical diagnosis of infectious diseases. Rev. Med. Virol. 2008; 18: 407–421.
71.Pass R. F., Stagno S., Dworsky M. E., Smith R. J., Alford C. A. Excretion of cytomegalovirus in mothers: observation after delivery of congenitally infected and normal infants. J. Infect. Dis. 1982b; 146: 1–6.
72.Plotkin S. A., Starr S. E., Friedman H. M., et al. Protective effects of Towne cytomegalovirus vaccine against low-passage cytomegalovirus administered as a challenge. J. Infect. Dis. 1989; 159: 860–865.
73.Remington, KleinStagno, S. (2001). Cytomegalovirus. In Infectious Diseases of the Fetus and Newborn Infant, 5th ed., p.389–424. Philadelphia: W. B. Saunders.
74.Ranganathan K., Worley S., Michaels M.G.., Danziger-Isakov L., et al. Cytomegalovirus immunoglobulin decreases the risk of cytomegalovirus infection but not disease after pediatric lung transplantation. J. Heart Lung Transplant. 2009; 28: 1050-1056.
75.Reynolds D. W., Stagno S., Hosty T. S., Tiller M., Alford C. A. Maternal cytomegalovirus excretion and perinatal infection. N. Engl. J. Med. 1973; 289: 1–5.
76.Roback J. D., Hillyer C. D., Drew W. L., et al. Multicenter evaluation of PCR methods for detecting CMV DNA in blood donors. Transfusion. 2001; 41: 1249–1257.
77.Shao Y., Zhu S., Jin C., Chen F. Development of multiplex loop-mediated isothermal amplification-RFLP (mLAMP-RFLP) to detect Salmonella spp. and Shigella spp. in milk. Int. J. Food Microbiol. 2011; 148: 75-79.
78.Shen C. Y., Chang W. W., Chao M. F., Huang E. S., Wu C. W. Seroepidemiology of cytomegalovirus infection among children between the ages of 4 and 12 years in Taiwan. J. Med. Virol. 1992; 37: 72–75.
79.Stagno S., Pass R. F., Dworsky M. E., et al. Congenital cytomegalovirus infection: the relative importance of primary and recurrent maternal infection. N. Engl. J. Med. 1982; 306: 945–949.
80.Storhoff J.J., Lucas A.D., Garimella V., Bao Y.P., Muller U.R. Homogeneous detection of unamplified genomic DNA sequences based on colorimetric scatter of gold nanoparticle probes. Nat. Biotechnol. 2004; 22: 883-887.
81.Tugizov S., Navarro D., Paz P., Wang Y., Qadri I., Pereira L. Function of human cytomegalovirus glycoprotein B: syncytium formation in cells constitutively expressing gB is blocked by virus-neutralizing antibodies. Virology. 1994; 201: 263–276.
82.Vancikova Z., Dvorak P. Cytomegalovirus infection in immunocompetent and immuno-compromised individuals---a review. Curr Drug Targets Immune Endocr Metabol Disord. 2001; 1: 179-187.
83.Varga A, James D. Use of reverse transcription loop-mediated isothermal amplification for the detection of Plum pox virus. J Virol Methods. 2006; 138:184-190.
84.Yamamura M, Makimura K, Ota Y. Evaluation of a new rapid molecular diagnostic system for Plasmodium falciparum combined with DNA filter paper, loop-mediated isothermal amplification, and melting curve analysis. Jpn J Infect Dis. 2009; 62: 20-25.
85.Yang J., Fang M. X., Li J., Lou G. Q., Lu H. J., Wu N. P. Detection of hepatitis C virus by an improved loop-mediated isothermal amplification assay. Arch. Virol. DOI: 10.1007/ s00705–011–1001-4.
86.Yurochko A. D., Hwang E. S., Rasmussen L., Keay S., Pereira L., Huang E. S. The human cytomegalovirus UL55 (gB) and UL75 (gH) glycoprotein ligands initiate the rapid activation of Sp1 and NF-kB during infection. J. Virol. 1997; 71: 5051–5059.
87.Wang X., Huong S. M., Chiu M. L., Raab-Traub N., Huang E. S. Epidermal growth factor receptor is a cellular receptor for human cytomegalovirus. Nature. 2003; 424: 456–461.
88.Zhao W., Brook M.A., Li Y. Design of gold nanoparticle-based colorimetric biosensing assays. Chem. Bio Chem. 2008; 9: 2363–2371.
89.Zhu H., Cong J. P., Mamtora G., Gingeras T., Shenk T. Cellular gene expression altered by human cytomegalovirus: global monitoring with oligonucleotide arrays. Proc. Nat Acad. Sci. USA. 1998; 95: 14470–14475.
90.陳建弘 許金川 (2001) 台灣地區B型肝炎病毒及C型肝炎病毒所引發的肝細胞癌,其時間及地理的變遷 --- 最近二十年的趨勢。財團法人國家實驗研究院科技政策研究與資訊中心
91.張定宗 (2000 / 2001) 南台灣地區C型肝炎防治模式之建立與評估 I/II 。財團法人國家實驗研究院科技政策研究與資訊中心
92.范家銘(2009) 利用迴路恆溫增幅法快速偵測C型肝炎病毒。國立臺灣大學醫學檢驗暨生物技術學研究所 碩士論文
93.李思元(2003) 利用恆溫聚合酶增幅反應定量Epstein-Barr病毒。國立臺灣大學醫學檢驗暨生物技術學研究所 碩士論文
94.李元民(2010) 台灣地區注射藥癮者間C型肝炎基因型之流行病學變化。內科學誌
95.蘇富雄(2007) 預測台灣某地區某大學B型肝炎帶原率下降趨勢:台灣B型肝炎疫苗施打二十年。長庚醫訊
96. 台灣 疾病管制局網站(http://www.cdc.gov.tw/)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top