|
References (chapter 1) 1.http://www.crnano.org/whatis.htm 2.http://www.zyvex.com/nanotech/feynman.html 3.S. Iijima, Nature 354, 56 (1991). 4.D. P. Yu, Z. G. Bai, S. Q. Feng, C. S. Lee, I. Bello, X. S. Sun, Y. H. Ang, G. W. Zhou, Z. Zhang, Solid State Commun. 105, 403 (1998). 5.H. Morkoc, S. N. Mohammad, Science 267, 51 (1995). 6.E. J. Lerner, Ind. Phys. 7, 10 (2001). 7.B. Wang, Y. H. Yang, C. X. Wang, and G. W. Yang, J. Appl. Phys. 98, 124303 (2005). 8.S. H. Lee, G. Jo, W. Park, S. Lee, Y. S. Kim, B. K. Cho, T. Lee, and W. B. Kim, ACS Nano. 4, 1829 (2010). 9.C. H. Lin, R. S. Chen, T. T. Chen, H. Y. Chen, Y. F. Chen, K. H. Chen, and L. C. Chen, Appl. Phys. Lett. 93, 112115 (2008). 10.H. J. Snaith and C. Ducati, Nano Lett. 10, 1259 (2010). 11.A. Kolmakov, Y. X. Zhang, G. S. Cheng, and M. Moskovits, Adv. Mater. 15, 997 (2003). 12.Y. J. Choi, I. S. Hwang, J. G. Park, K. J. Choi, J. H. Park, and J. H. Lee, Nanotechnology 19, 095508 (2008). 13.R. H. Bube, Photoconductivity of Solids, Wiley, New York (1960). 14.A. Rose, Concepts in Photoconductivity and Allied Problems, Interscience Publishers, New York (1963). 15.R. H. Bube, Photoelectronic Properties of Semiconductors, Cambridge University Press, Cambridge, New York (1992). 16. H. Mattoussi, J. M. Mauro, E. Goodman, G. P. Anderson, V. C. Sundar, F. V. Mikulec, and M. G. Bawendi, J. Am. Chem. Soc. 122, 12142 (2000). 17.S. Coe, W. K. Woo, M. G. Bawendi, and V. Bulovic, Nature 420, 800 (2002). 18.P. Yu, K. Zhu, A. G. Norman, S. Ferrere, A. J. Frank, and A. J. Nozik, J. Phys. Chem. B 110, 25451 (2006). 19.F. F. Amos, S. A. Morin, J. A. Streifer, R. J. Hamers, and S. Jin, J. Am. Chem. Soc. 129, 14296 (2007). 20.G. Schmid, D. V. Talapin, E. V. Shevchenko, Self-Assembly of Metal Nanoparticles (G. Schmid Ed. Wiley-VCH: Weinheim, Germany) p.251 (2004). 21.A. P. Alivisatos, X. Peng, T. E. Wilson, K. P. Johnsson, C. J. Loweth, M. P. J. Bruchez, and P. G. Schultz, Nature 382, 609 (1996). 22.A. L. Rogach, D. V. Talapin, E. V. Shevchenko, A. Kornowski, M. Haase, and H. Weller, Adv. Funct. Mater. 12, 653 (2002). 23.H. Nakamura, W. Kato, M. Uehara, K. Nose, T. Omata, S. Otsuka-Yao-Matsuo, M. Miyazaki and H. Maeda, Chemistry of Materials 18 (14), 3330-3335 (2006). 24.M. A. Malik, P. O''Brien, N. Revaprasadu, Adv. Mater. 11 (17), 1441-1444 (1999). 25.M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, P. F. Barbara, B. A. Korgel, Journal of the American Chemical Society, 130 (49), 16770-16777 (2008). 26.A. P. Alivisatos, Science, 271 (5251), 933-937 (1996). 27.C. W. Lai, Y. H. Wang, Y. C. Chen, C. C. Hsieh, B. P. Uttam, J. K. Hsiao, C. C. Hsu, P. T. Chou, Journal of Materials Chemistry, 19 (44), 8314-8319 (2009). 28.W. J. Zhang, X. H. Zhong, Inorganic Chemistry, 50 (9), 4065-4072 (2011). 29.J. Feng, M. Sun, F. Yang, X. Yang, Chemical Communications, 47 (22) (2011). References (chapter 2) 1.R. A. Stradling and P. C. Klipstein, Growth and Characterisation of Semiconductors. 2.S. Perkowitz, Optical Characterization of Semiconductors: Infrard, Raman, and Photoluminescence Spectroscopy. 3.H. J. Queisser, Phys. Rev. Lett. 54, 234 (1985). 4.S. Banerjee, A. Dan, and D. Chakravorty, J. Mater. Sci. 37, 4261 (2002). 5.R. S. Wagner and W. C. Ellis, Appl. Phys. Lett., 4, 89 (1964). 6.Givarzikov, Growth of Whiskers by the Vapor-Liquid-Solid mechanism, E. Kaldis (Ed.), Current Topics in Materials Science (1978). 7.Y. Wu and P. Yang, J. Am. Chem. Soc. 123, 3165 (2001). 8.M. S. Gudiksen, J. Wang, and C. M. Lieber, J. Phys. Chem. B, 105, 4062 (2001). 9.X. H. Chen, M. Moskovits, Nano. Lett., 7, 807 (2007). 10.S. Kim, B. Fisher, H. J. Eisier and M. Bawendi, J.Am. Chem. Soc. 125, 11466 (2003). 11.C. T. Cheng, C. Y. Chen, C. W. Lai, W. H. Liu, S. C. Pu, P. T. Chou, Y. H. Chou and H. T. Chiu, J. Mater. Chem. 15, 3409 (2005). 12.L. Li, T. J. Daou, I. Texier, T. K. C. Tran, Q. L. Nguyen, P. Reiss, Chemistry of Materials 21 (12), 2422-2429 (2009). 13.W. J. Zhang, X. H. Zhong, Inorganic Chemistry 50 (9), 4065-4072 (2011). References (chapter 3) 1.S. H. Lee, G. Jo, W. Park, S. Lee, Y. S. Kim, B. K. Cho, T. Lee, and W. B. Kim, ACS Nano. 4, 1829 (2010). 2.C. H. Lin, R. S. Chen, T. T. Chen, H. Y. Chen, Y. F. Chen, K. H. Chen, and L. C. Chen, Appl. Phys. Lett. 93, 112115 (2008). 3.H. J. Snaith and C. Ducati, Nano Lett. 10, 1259 (2010). 4.A. Kolmakov, Y. X. Zhang, G. S. Cheng, and M. Moskovits, Adv. Mater. 15, 997 (2003). 5.Y. J. Choi, I. S. Hwang, J. G. Park, K. J. Choi, J. H. Park, and J. H. Lee, Nanotechnology 19, 095508 (2008). 6.C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, Nano Lett. 7, 1003 (2007). 7.A. Kolmakov, D. O. Klenov, Y. Lilach, S. Stemmer, and M. Moskovits, Nano Lett. 5, 667 (2005). 8.X. H. Chen, and M. Moskovits, Nano Lett. 7, 807 (2007). 9.C. H. Lin, T. T. Chen, and Y. F. Chen, Opt. Exp. 16, 16916 (2008). 10.P. T. Chou, C. Y. Chen, C. T. Cheng, S. C. Pu, K. C. Wu, Y. M. Cheng, C. W. Lai, Y. H. Chou, and H. T. Chiu, ChemPhysChem 7, 222 (2006). 11.C. Y. Chen, C. T. Cheng, J. K. Yu, S. C. Pu, Y. M. Cheng, P. T. Chou, Y. H. Chou and H. T. Chiu, J. Phys. Chem. B 108, 10687 (2004). 12.R. S. Chen, H. Y. Chen, C. Y. Lu, K. H. Chen, C. P. Chen, L. C. Chen, and Y. J. Yang, Appl. Phys. Lett. 91, 223106 (2007). 13.X. T. Zhou, F. Heigl, M. W. Murphy, T. K. Sham, T. Regier, I. Coulthard, and R. I. R. Blyth, Appl. Phys. Lett. 89, 213109 (2006). 14.J. A. Garrido, E. Monroy, I. Izpura, and E. Munoz, Semicond. Sci. Technol. 13, 563 (1998). References (chapter 4) 1.H. Weller, Adv. Mater. 5 (2), 88-95 (1993). 2.C. B. Murray, D. J. Norris, M. G. Bawendi, Journal of the American Chemical Society, 115 (19), 8706-8715 (1993). 3.M. Bruchez,; M. Moronne,; P. Gin,; S. Weiss,; A. P. Alivisatos, Science 281 (5385), 2013-2016 (1998). 4.V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, M. G. Bawendi, Science, 290 (5490), 314-317 (2000). 5.V. L. Colvin, M. C. Schlamp, A. P. Alivisatos, Nature, 370 (6488), 354-357 (1994). 6.X. Michalet, F. F. ; Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, S. Weiss, Science, 307 (5709), 538-544 (2005). 7.H. Nakamura, W. Kato, M. Uehara, K. Nose, T. Omata, S. Otsuka-Yao-Matsuo, M. Miyazaki, H. Maeda,, Tunable photoluminescence wavelength of chalcopyrite CuInS2-based semiconductor nanocrystals synthesized in a colloidal system. Chemistry of Materials, 18 (14), 3330-3335 (2006). 8.M. A. Malik, P. O''Brien, N. Revaprasadu, Adv. Mater., 11 (17), 1441-1444 (1999). 9.M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, P. F. Barbara, B. A. Korgel, Journal of the American Chemical Society, 130 (49), 16770-16777 (2008). 10.L. Li, T. J. Daou, I. Texier, T. K. C. Tran, Q. L. Nguyen, P. Reiss, Chemistry of Materials, 21 (12), 2422-2429 (2009). 11.T. Pons, E. Pic, N. Lequeux, E. Cassette, L. Bezdetnaya, F. Guillemin, F. Marchal, B. Dubertret, ACS Nano, 4 (5), 2531-2538 (2010). 12.A. P. Alivisatos, Science, 271 (5251), 933-937 (1996). 13.C. W. Lai, Y. H. Wang, Y. C. Chen, C. C. Hsieh, B. P. Uttam, J. K. Hsiao, C. C. Hsu, P. T. Chou, Journal of Materials Chemistry, 19 (44), 8314-8319 (2009). 14.W. J. Zhang, X. H. Zhong, Inorganic Chemistry, 50 (9), 4065-4072 (2011). 15.J. Feng, M. Sun, F. Yang, X. Yang, Chemical Communications, 47 (22) (2011). 16.S. H. Lee, G. Jo, W. Park, S. Lee, Y. S. Kim, B. K. Cho, T. Lee, W. B. Kim, ACS Nano, 4 (4), 1829-1836 (2010). 17.M. L. Lu, H. Y. Lin, T. T. Chen, Y. F. Chen, Appl. Phys. Lett., 99 (9) (2011). 18.C. H. Lin, R. S. Chen, T. T. Chen, H. Y. Chen, Y. F. Chen, K. H. Chen, L. C. Chen, Appl. Phys. Lett., 93 (11) (2008). 19.H. J. Snaith, C. Ducati, Nano Lett., 10 (4), 1259-1265 (2010). 20.A. Kolmakov, Y. X. Zhang, G. S. Cheng, M. Moskovits, Adv. Mater., 15 (12), 997-+ (2003). 21.Y. J. Choi, I. S. Hwang, J. G. Park, K. J. Choi, J. H. Park, J. H. Lee, Nanotechnology, 19 (9) (2008). 22.C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, D. Wang,, Nano Lett. 7 (4), 1003-1009 (2007). 23.J. D. Prades, F. Hernandez-Ramirez, R. Jimenez-Diaz, M. Manzanares, T. Andreu, A. Cirera, A. Romano-Rodriguez, J. R. Morante, Nanotechnology, 19 (46) (2008). 24.A. Kolmakov, D. O. Klenov, Y. Lilach, S. Stemmer, M. Moskovits, Nano Lett., 5 (4), 667-673 (2005). 25.X. H. Chen, M. Moskovits, Nano Lett., 7 (3), 807-812 (2007). 26.C. H. Lin, T. T. Chen, Y. F. Chen, Opt. Express, 16 (21), 16916-16922 (2008). 27.M. L. Lu, T. Y. Lin, T. M. Weng, Y. F. Chen, Opt. Express, 19 (17), 16266-16272 (2011). 28.M. L. Lu, C. H. Lin and Y. F. Chen, Appl. Phys. Lett., 99 (8) (2011). 29.P. T. Chou, C. Y. Chen, C. T. Cheng, S. C. Pu, K. C. Wu, Y. M. Cheng, C. W. Lai, Y. H. Chou, H. T. Chiu, ChemPhysChem 7 (1), 222-228 (2006). 30.H. Zhong, S. S. Lo, T. Mirkovic, Y. Li, Y. Ding, Y. Li, G. D. Scholes, ACS Nano, 4 (9), 5253-5262 (2010). 31.J. A. Garrido, E. Monroy, I. Izpura, E. Munoz, Semicond. Sci. Technol., 13 (6), 563-568 (1998). 32.D. E. Nam, W. S. Song, H., Facile Yang, Journal of Materials Chemistry, 21 (45), 18220-18226 (2011). 33.M. Uehara, K. Watanabe, Y. Tajiri, H. Nakamura, H. Maeda, J. Chem. Phys., 129 (13) (2008). 34.M. Kuno, D. P. Fromm, S. T. Johnson, A. Gallagher, D. J. Nesbitt, Phys. Rev. B, 67 (12) (2003). 35.H. C. Wu, Y. C. Huang, I. K. Ding, C. C. Chen, Y. H. Yang, C. C. Tsai, C. D. Chen, Y. T. Chen, Adv. Funct. Mater., 21 (3), 474-479 (2011). 36.Y. Yang, H. Z. Zhong, Z. L. Bai, B. S. Zou, Y. F. Li, G. D. Scholes, J. Phys. Chem.C 2012, 116 (13), 7280-7286. 37.L. F. Hu, J. Yan, M. Y. Liao, L. M. Wu, X. S. Fang, Small 2011, 7 (8), 1012-1017. 38.H. Z. Zhong, Y. Zhou, M. F. Ye, Y. J. He, J. P. Ye, C. He, C. H. Yang, Y. F. Li,. Chem. Mater. 2008, 20 (20), 6434-6443. References (chapter 5) 1.Z. Liu, D. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. Liu, B. Lei, and C. Zhou, Adv. Mater. 15, 1754 (2003). 2.X. H. Kong, and Y. D. Li, Sens. Actuators B 105, 449 (2005). 3.A. Kolmakov, Y. X. Zhang, G. S. Cheng, and M. Moskovits, Adv. Mater. 15, 997 (2003). 4.Y. J. Choi, I. S. Hwang, J. G. Park, K. J. Choi, J. H. Park, and J. H. Lee, Nanotechnology 19, 095508 (2008). 5.S. H. Lee, G. Jo, W. Park, S. Lee, Y. S. Kim, B. K. Cho, T. Lee, and W. B. Kim, ACS Nano. 4, 1829 (2010). 6.C. H. Lin, R. S. Chen, T. T. Chen, H. Y. Chen, Y. F. Chen, K. H. Chen, and L. C. Chen, Appl. Phys. Lett. 93, 112115 (2008). 7.H. J. Snaith and C. Ducati, Nano Lett. 10, 1259 (2010). 8.F. Binet, J. Y. Duboz, E. Rosencher, F. Scholz, and V. Harle, Appl. Phys. Lett. 69, 1202 (1996). 9.E. Munoz, E. Monroy, J. A. Garrido, I. Izpura, F. J. Sanchez, M. A. Sanchez-Garcia, E. Calleja, B. Beaumont, and P. Gibart, Appl. Phys. Lett. 71, 870 (1997). 10.A. Kolmakov, D. O. Klenov, Y. Lilach, S. Stemmer, and M. Moskovits, Nano Lett. 5, 667 (2005). 11.X. H. Chen, and M. Moskovits, Nano Lett. 7, 807 (2007). 12.C. H. Lin, T. T. Chen, and Y. F. Chen, Opt. Exp. 16, 16916 (2008). 13.N. Mironova-Ulmane, A. Kuzmin, I. Steins, J. Grabis, I. Sildos and M. Pars, J. Phys.: Conf. Ser. 93, 012039 (2007) 14.R. S. Chen, H. Y. Chen, C. Y. Lu, K. H. Chen, C. P. Chen, L. C. Chen, and Y. J. Yang, Appl. Phys. Lett. 91, 223106 (2007). 15.X. T. Zhou, F. Heigl, M. W. Murphy, T. K. Sham, T. Regier, I. Coulthard, and R. I. R. Blyth, Appl. Phys. Lett. 89, 213109 (2006). 16.J. A. Garrido, E. Monroy, I. Izpura, and E. Munoz, Semicond. Sci. Technol. 13, 563 (1998). References (chapter 6) 1.Prinz, G. A., Hybrid Ferromagnetic-semiconductor Structures. Science 1990, 250 (4984), 1092-1097. 2.Jungwirth, T.; Wunderlich, J.; Olejnik, K., Spin Hall effect devices. Nat. Mater. 2012, 11 (5), 382-390. 3.Zwanenburg, F. A.; van der Mast, D. W.; Heersche, H. B.; Kouwenhoven, L. P.; Bakkers, E., Electric Field Control of Magnetoresistance in InP Nanowires with Ferromagnetic Contacts. Nano Lett. 2009, 9 (7), 2704-2709. 4. Xie, P.; Xiong, Q. H.; Fang, Y.; Qing, Q.; Lieber, C. M., Local electrical potential detection of DNA by nanowire-nanopore sensors. Nat. Nanotechnol. 2012, 7 (2), 119-125. 5. Yan, H.; Choe, H. S.; Nam, S. W.; Hu, Y. J.; Das, S.; Klemic, J. F.; Ellenbogen, J. C.; Lieber, C. M., Programmable nanowire circuits for nanoprocessors. Nature 2011, 470 (7333), 240-244. 6. Varghese, B.; Hoong, T. C.; Yanwu, Z.; Reddy, M. V.; Chowdari, B. V. R.; Wee, A. T. S.; Vincent, T. B. C.; Lim, C. T.; Sow, C. H., Co3O4 nanostructures with different morphologies and their field-emission properties. Adv. Funct. Mater. 2007, 17 (12), 1932-1939. 7. Fang, X. S.; Yan, J.; Hu, L. F.; Liu, H.; Lee, P. S., Thin SnO2 Nanowires with Uniform Diameter as Excellent Field Emitters: A Stability of More Than 2400 Minutes. Adv. Funct. Mater. 2012, 22 (8), 1613-1622. 8. Bie, Y. Q.; Liao, Z. M.; Zhang, H. Z.; Li, G. R.; Ye, Y.; Zhou, Y. B.; Xu, J.; Qin, Z. X.; Dai, L.; Yu, D. P., Self-Powered, Ultrafast, Visible-Blind UV Detection and Optical Logical Operation based on ZnO/GaN Nanoscale p-n Junctions. Adv. Mater. 2011, 23 (5), 649-653. 9. Rigutti, L.; Tchernycheva, M.; Bugallo, A. D.; Jacopin, G.; Julien, F. H.; Zagonel, L. F.; March, K.; Stephan, O.; Kociak, M.; Songmuang, R., Ultraviolet Photodetector Based on GaN/AlN Quantum Discs in a Single Nanowire (vol 10, pg 2939, 2010). Nano Lett. 2010, 10 (10), 4284-4284. 10. Tang, J. S.; Wang, C. Y.; Xiu, F. X.; Lang, M. R.; Chu, L. W.; Tsai, C. J.; Chueh, Y. L.; Chen, L. J.; Wang, K. L., Oxide-Confined Formation of Germanium Nanowire Heterostructures for High-Performance Transistors. ACS Nano 2011, 5 (7), 6008-6015. 11. Kulmala, T. S.; Colli, A.; Fasoli, A.; Lombardo, A.; Haque, S.; Ferrari, A. C., Self-Aligned Coupled Nanowire Transistor. ACS Nano 2011, 5 (9), 6910-6915. 12. Krishnamoorthy, T.; Tang, M. Z.; Verma, A.; Nair, A. S.; Pliszka, D.; Mhaisalkar, S. G.; Ramakrishna, S., A facile route to vertically aligned electrospun SnO2 nanowires on a transparent conducting oxide substrate for dye-sensitized solar cells. J. Mater. Chem. 2012, 22 (5), 2166-2172. 13. Lin, C. H.; Chen, R. S.; Chen, T. T.; Chen, H. Y.; Chen, Y. F.; Chen, K. H.; Chen, L. C., High photocurrent gain in SnO2 nanowires. Appl. Phys. Lett. 2008, 93 (11),112115. 14. Snaith, H. J.; Ducati, C., SnO(2)-Based Dye-Sensitized Hybrid Solar Cells Exhibiting Near Unity Absorbed Photon-to-Electron Conversion Efficiency. Nano Lett. 2010, 10 (4), 1259-1265. 15. Kim, J.; Yun, J. H.; Kim, C. H.; Park, Y. C.; Woo, J. Y.; Park, J.; Lee, J. H.; Yi, J.; Han, C. S., ZnO nanowire-embedded Schottky diode for effective UV detection by the barrier reduction effect. Nanotechnology 2010, 21 (11), 115205. 16. Soci, C.; Zhang, A.; Xiang, B.; Dayeh, S. A.; Aplin, D. P. R.; Park, J.; Bao, X. Y.; Lo, Y. H.; Wang, D., ZnO nanowire UV photodetectors with high internal gain. Nano Lett. 2007, 7 (4), 1003-1009. 17. Prades, J. D.; Hernandez-Ramirez, F.; Jimenez-Diaz, R.; Manzanares, M.; Andreu, T.; Cirera, A.; Romano-Rodriguez, A.; Morante, J. R., The effects of electron-hole separation on the photoconductivity of individual metal oxide nanowires. Nanotechnology 2008, 19 (46), 465501. 18. Kolmakov, A.; Zhang, Y. X.; Cheng, G. S.; Moskovits, M., Detection of CO and O2 using tin oxide nanowire sensors. Adv. Mater. 2003, 15 (12), 997-1000. 19. Choi, Y. J.; Hwang, I. S.; Park, J. G.; Choi, K. J.; Park, J. H.; Lee, J. H., Novel fabrication of an SnO2 nanowire gas sensor with high sensitivity. Nanotechnology 2008, 19 (9), 095508. 20. Kolmakov, A.; Klenov, D. O.; Lilach, Y.; Stemmer, S.; Moskovits, M., Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. Nano Lett. 2005, 5 (4), 667-673. 21. Chen, X. H.; Moskovits, M., Observing catalysis through the agency of the participating electrons: Surface-chemistry-induced current changes in a tin oxide nanowire decorated with silver. Nano Lett. 2007, 7 (3), 807-812. 22. Lin, C. H.; Chen, T. T.; Chen, Y. F., Photocurrent enhancement of SnO2 nanowires through Au-nanoparticles decoration. Opt. Express 2008, 16 (21), 16916-16922. 23. Lu, M. L.; Lin, T. Y.; Weng, T. M.; Chen, Y. F., Large enhancement of photocurrent gain based on the composite of a single n-type SnO2 nanowire and p-type NiO nanoparticles. Opt. Express 2011, 19 (17), 16266-16272. 24. Lu, M. L.; Lin, C. H.; Chen, Y. F., Enhanced photocurrent gain and spectrum range based on the composite consisting of SnO2 nanowires and CdSe quantum dots. Appl. Phys. Lett. 2011, 99 (8), 081109. 25. Yang, H. Y.; Yu, S. F.; Lau, S. P.; Tsang, S. H.; Xing, G. Z.; Wu, T., Ultraviolet coherent random lasing in randomly assembled SnO2 nanowires. Appl. Phys. Lett. 2009, 94 (24), 241121. 26. Yang, Q.; Guo, X.; Wang, W. H.; Zhang, Y.; Xu, S.; Lien, D. H.; Wang, Z. L., Enhancing Sensitivity of a Single ZnO Micro-/Nanowire Photodetector by Piezo-phototronic Effect. ACS Nano 2010, 4 (10), 6285-6291. 27. Chen, M. W.; Chen, C. Y.; Lien, D. H.; Ding, Y.; He, J. H., Photoconductive enhancement of single ZnO nanowire through localized Schottky effects. Opt. Express 2010, 18 (14), 14836-14841. 28. Zhou, W.; Liu, R.; Wan, Q.; Zhang, Q.; Pan, A.; Guo, L.; Zou, B., Bound Exciton and Optical Properties of SnO2 One-Dimensional Nanostructures. J. Phys. Chem. C 2009, 113 (5), 1719-1726. 29. Binet, F.; Duboz, J. Y.; Rosencher, E.; Scholz, F.; Harle, V., Mechanisms of recombination in GaN photodetectors. Appl. Phys. Lett. 1996, 69 (9), 1202-1204. 30. Munoz, E.; Monroy, E.; Garrido, J. A.; Izpura, I.; Sanchez, F. J.; SanchezGarcia, M. A.; Calleja, E.; Beaumont, B.; Gibart, P., Photoconductor gain mechanisms in GaN ultraviolet detectors. Appl. Phys. Lett. 1997, 71 (7), 870-872. 31. Wang, Y.; Ramos, I.; Santiago-Aviles, J. J., Optical bandgap and photoconductance of electrospun tin oxide nanofibers. J. Appl. Phys. 2007, 102 (9), 093517. 32. Zhou, X. T.; Heigl, F.; Murphy, M. W.; Sham, T. K.; Regier, T.; Coulthard, I.; Blyth, R. I. R., Time-resolved x-ray excited optical luminescence from SnO2 nanoribbons: Direct evidence for the origin of the blue luminescence and the role of surface states. Appl. Phys. Lett. 2006, 89 (21),213109. 33. Garrido, J. A.; Monroy, E.; Izpura, I.; Munoz, E., Photoconductive gain modelling of GaN photoconductors. Semicond. Sci. Technol. 1998, 13 (6), 563-568. 34. Wu, T.; Bur, A.; Hockel, J. L.; Wonng, K.; Chung, T. K.; Carman, G. P., Electrical and Mechanical Manipulation of Ferromagnetic Properties in Polycrystalline Nickel Thin Film. IEEE Magn. Lett. 2011, 2, 6000104. 35. Rattanasakulthong, W.; Sirisangsawang, P.; Pinitsoontorn, S.; Sirisathitkul, C., Dependence of Hysteresis Loops on Thickness of Thin Nickel Films Prepared by RF Sputtering. Adv. Mat. Res. 2011, 335-336, 1443-1447. 36. Hernandez-Ramirez, F.; Prades, J. D.; Tarancon, A.; Barth, S.; Casals, O.; Jimenez-Diaz, R.; Pellicer, E.; Rodriguez, J.; Morante, J. R.; Juli, M. A.; Mathur, S.; Romano-Rodriguez, A., Insight into the Role of Oxygen Diffusion in the Sensing Mechanisms of SnO2 Nanowires. Adv. Funct. Mater. 2008, 18 (19), 2990-2994. 37. Maier, J.; Gopel, W., Investigations of the Bulk Defect Chemistry of Polycrystalline Talline Tin (IV) Oxide. J. Solid State Chem. 1988, 72 (2), 293-302. 38. Chen, R. S.; Chen, H. Y.; Lu, C. Y.; Chen, K. H.; Chen, C. P.; Chen, L. C.; Yang, Y. J., Ultrahigh photocurrent gain in m-axial GaN nanowires. Appl. Phys. Lett. 2007, 91 (22), 223106. 39. Hu, L. F.; Yan, J.; Liao, M. Y.; Wu, L. M.; Fang, X. S., Ultrahigh External Quantum Efficiency from Thin SnO2 Nanowire Ultraviolet Photodetectors. Small 2011, 7 (8), 1012-1017.
|