跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) 您好!臺灣時間:2024/09/19 23:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:潘祈叡
研究生(外文):Chi-Ruei Pan
論文名稱:對半局域交換相關泛函之漸進修正
論文名稱(外文):Asymptotic Correction Scheme to Semilocal Exchange-Correlation Functionals
指導教授:蔡政達蔡政達引用關係
指導教授(外文):Jeng-Da Chai
口試委員:張秀華薛宏中
口試委員(外文):A. H. H. ChangHung-Chung Hsueh
口試日期:2011-06-29
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:50
中文關鍵詞:密度泛函理論半局域交換相關泛函雷德堡激發態單位分解
相關次數:
  • 被引用被引用:0
  • 點閱點閱:176
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於一般的密度泛函近似,其長程行為多半遞減太快,為了修正半局域交換相 關泛函應用在有限大小系統的漸進行為,我們利用早期 Fermi Amaldi 的模型,作 為修正長程行為的基礎。Fermi Amaldi 模型不滿足尺度的一致性,因此我們將密 度侷限在原子附近,以解決此問題。基於現有的半局域交換相關泛函,加上具有 正確的漸進模式的交換位勢,並再考慮雙重計算的能量,我們提出 LFA (局限在 原子的 Fermi Amaldi) 方法。應用此漸進修正的方法在 Perdew-Burke-Ernzerhof 泛函,預測的最高被佔據態能量和雷德堡激發態能量具有顯著的改善。此外,我 們利用單位分解方法以降低計算成本,結果相當精確,和用數值積分的逼近結果 可以相差極小,由於計算效率的提昇,我們能將 LFA 應用在更多更大的系統。
Aiming to correct the asymptotic behavior of semilocal exchange-correlation (XC) functionals for finite system, we proposed a correction scheme, wherein an exchange energy density functional whose functional derivative has the exact −1/r asymptote can be added to any semilocal XC functional, as the double-counting energy can be easily discounted. Applying this asymptotic correction scheme to the Perdew-Burke-Ernzerhof functional, the predicted highest-occupied-molecular-orbital (HOMO) energies and Rydberg excitation energies of molecules are shown to be significantly improved. A computationally efficient method which is called the Resolution of the identity (RI) that has been implemented. This method can converge to the exact LFA faster than the numerical LFA method which evaluates LFA functional by performing numerical quadrature. With the great advancement in the efficiency, LFA is made practical for large system.
1 Introduction 8
2 Long-range correction of localized FA model 11
2.1 Fermi Amaldi model ........................... 11
2.2 Asymptotic Correction Scheme ..................... 14
2.3 Resolution-of-identity Approximation..................18
2.4 Results and Discussion.......................... 23
3 Summary and Conclusions 31
Bibliography 32
A Supplementary Material Part I 35
A.1 Sum rule for exchange correlation hole ................. 35
B Supplementary Material Part II 37
B.1 Size-consistency of LFA model...................... 37
B.2 Construction of atomic weight ...................... 39
C Supplementary Material Part III 40
[1] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
[2] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
[3] E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984).
[4] M. Petersilka, U. J. Gossmann, and E. K. U. Gross, Phys. Rev. Lett. 76, 1212 (1996).
[5] S. Kummel and L. Kronik, Rev. Mod. Phys. 80, 3 (2008).
[6] J. P. Perdew, A. Ruzsinszky, G. I. Csonka, L. A. Constantin, and J. Sun, Phys.
Rev. Lett. 103, 026403 (2009).
[7] A. J. Cohen, P. Mori-Sanchez, and W. Yang, Science 321, 792 (2008).
[8] A. J. Cohen, P. Mori-Sanchez, and W. Yang, Chem. Rev. 112, 289 (2011).
[9] J.-D. Chai, J. Chem. Phys. 136, 154104 (2012).
[10] M. E. Casida, C. Jamorski, K. C. Casida, and D. R. Salahub, J. Chem. Phys. 108, 4439 (1998).
[11] C.-O. Almbladh and U. von Barth, Phys. Rev. B 31, 3231 (1985).
[12] R. van Leeuwen and E. J. Baerends, Phys. Rev. A 49, 2421 (1994).
[13] D. J. Tozer and N. C. Handy, J. Chem. Phys. Rev. A 49, 2421 (1994).
[14] D. J. Tozer, J. Chem. Phys. 112, 3507 (2000).
[15] S. Liu, P. W. Ayers, and R. G. Parr, J. Chem. Phys. 111, 6197 (1999).
[16] A. Gorling, Phys. Rev. Lett. 83, 5459 (1999).
[17] P. W. Ayers and M. Levy, J. Chem. Phys. 115, 4438 (2001).
[18] X. Andrade and A. Aspuru-Guzik, Phys. Rev. Lett. 107, 183002 (2011).
[19] A. P. Gaiduk and V. N. Staroerov, J. Chem. Phys. 131, 044107 (2009).
[20] E. Fermi and E. Amaldi, Accad. Ital. Rome 6, 119 (1934).
[21] J. P. Perdew and A. Zunger, Phys. Rev. B 23. 5048 (1981).
[22] J. Lagsgaard and K. Stokbro, Phys. Rev. Lett. 86, 2834 (2001).
[23] J. P. Perdew, Adv. Quantum Chem. 21, 113 (1990).
[24] F. L. Hirshfeld, Theor. Chim. Acta 44, 129 (1977).
[25] R. F. W. Bader, Atoms in Molecules: A Quantum Theory, (Clarendon, Oxford, 1990).
[26] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
[27] Q. Zhao, R. C. Morrison, and R. G. Parr, Phys. Rev. A 50, 2138 (1994).
[28] M. Levy, J. P. Perdew, and V. Sahni, Phys. Rev. A 30, 2745 (1984). [29] P. Ayers, R. Morrison, and R. Parr, Molecular Physics 103, 2061 (2005).
[30] J.-D. Chai, Y. S. Lin, C. W. Tsai, and G. D. Li, J. Chem. Phys. 136, 154106 (2012).
[31] R. A. Kendall and H. A. Fruchtl, Theor. Chem. Acc. 97, 158 (1997).
[32] A. M. Burow, M. Sierka, and F. Mohamed, J. Chem. Phys. 131, 214101 (2009).
[33] J. E. Jaffe and A. C. Hess, J. CHem. Phys. 105, 10983 (1996).
[34] Y. Shao et al., Phys. Chem. CHem. Phys. 8, 3172 (2006).
[35] L. A. Curtiss, K. Raghavachari, P. C. Redfern, and J. A. Pople, J. Chem. Phys. 106, 1063 (1997).
[36] L. A. Curtiss, P. C. Redfern, K. Raghavachari, and J. A. Pople, J. Chem. Phys. 109, 1063 (1998).
[37] L. A. Curtiss, K. Raghavachari, P. C. Redfern, and J. A. Pople, J. Chem. Phys. 112, 7374 (2000).
[38] J.-D. Chai and M. Head-Gordon, J. Chem. Phys. 128, 084106 (2008).
[39] S. Hirata and M. Head-Gordon, Chem. Phys. Lett. 314, 291 (1999).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top