( 您好!臺灣時間:2023/03/24 12:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


研究生(外文):Cheng-Wei Lee
論文名稱:具無縫換手之Network Mobility管理方案
論文名稱(外文):On the Network Mobility Management Scheme with Seamless Handover
中文關鍵詞:Network MobilityMobile WiMAX高速列車無縫式換手QoS Handover
外文關鍵詞:Network MobilityMobile WiMAXhigh-speed trainseamless handoverQoS Handover
  • 被引用被引用:0
  • 點閱點閱:356
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
無線網路存取技術進步,開創行動網際網路的新時代,連帶車載通訊的需求也越來越高。然而車輛的高移動特性,突顯通訊裝置(device)本身電力與硬體的限制,從裝置到地面基地台這段無線線路品質因高速移動而低落。Network mobility是將全部一起移動的群體視為一個整體(entity)的概念,特別適合用來改善車載通訊的品質。在車輛行駛時,無可避免的需頻繁執行換手作業,所以需要有效率的換手協定,以符合即時通訊(real-time communications)的服務品質(QoS)要求。然而,車輛如是以高速移動,則用來完成換手程序的時限更短,再加上都卜勒效應會提高無線線路傳輸錯誤率,再再增加移動管理的難度。
在這篇論文中,我們首先研究面對高速行駛的車輛時,network mobility的移動管理協定之議題,並徹底檢視與比較各種network mobility解決方案的特點。基於使用彈性,路由效率和安全方面等原因,我們建議把車輛上的節點(nodes)根據他們自己的特點分成不同的網路,並用智能移動路由器(MRs)統一管理。
為了從通訊協定上支援高速行駛車輛的QoS-handover,我們提出在all-IP網路中,考量服務品質的network mobility架構和協議,稱之為Hi-NEMO,包含兩個互補的QoS-handover協定。Hi-NEMO不會在地面基地台(BS)與移動路由器(MR)間,增加額外的信令。模擬實驗顯示Hi-NEMO大幅降低在容易有傳輸錯誤的無線環境中的換手延遲(handover delay)。此外,有鑑於在這綠色科技的時代,高速鐵路系統日益流行,我們進一步研究以無線裝置連接到WiMAX的高速長途列車的移動管理。目前商業化設備產品中已設計了資源預留機制,以確保在換手過程中的QoS,不過仍有改進的空間。我們利用高速列車車長特性,提出2MR方案,於車上部署兩個移動路由器,並為在火車上的移動節點(mobile nodes)設計無縫換手協定。

The evolution of wireless access technologies has led to a new era of mobile Internet for high speed vehicles. Network mobility is particularly suitable for vehicles because it considers the mobility of an entire network. Vehicles perform handover frequently thus efficient handover is essential to meet the QoS requirements for real-time communications. When moving with high speed, the time constraint is even stricter and the Doppler Effect increases the transmission error rate that both add challenges in mobility management.
In this dissertation, we first study the mobility management protocols for network mobility and the issues when applying to high-speed vehicles. A thorough review and feature comparison of network mobility solutions are presented. For the reasons of flexibility, route efficiency and security concern, we suggest that the nodes in the vehicle to be separated into different networks based on their characteristics, and managed by smart mobile routers (MRs).
To provide protocol-support for QoS-handover to high-speed vehicles, we propose a QoS incorporated network mobility architecture and protocols, called Hi-NEMO, for all-IP networks. Two complementary QoS-handover protocols are proposed, and Hi-NEMO does not introduce additional signaling between the BS and the MR. As a result, handover delay in an error-prone wireless environment can be reduced substantially.
Furthermore, in the era of green technology, high-speed rail systems are increasingly popular. Therefore, we investigate the mobility provisioning for long distance high-speed trains in WiMAX. In practice, resource reservation mechanisms have been designed to ensure the QoS during handover; however, there are rooms for improvement. We take advantage of the long physical size of high-speed trains and proposed the 2MR scheme that deploys two MRs, and then design handover protocols to provide seamless handover for the mobile nodes on the train.

摘 要 i
Abstract iii
I. Introduction 1
II. Reviewing Network Mobility 7
A. Mobile Network Prefix 7
B. Sub-optimal Packet Routing and Tunnel Overhead 8
C. Re-establishing Network Connectivity during Handover 10
D. Network Resource Reservation 13
III. Network Architecture and IP Network Connectivity for the MNNs 15
A. Establishing IP Network Connectivity 16
B. Interaction between the MNNs and the MR When Handover 17
1) For the LFMNs 17
2) For the VMNs 17
IV. Hi-NEMO 19
A. Design Principles 19
B. Background of IEEE 802.16e 20
C. The Architecture of Hi-NEMO 21
D. The QoS-incorporated Registration Process 22
E. The QoS-Handover Protocols 25
1) The Proactive Handover Protocol 26
2) The Reactive Handover Protocol 29
V. Performance Evaluation of Hi-NEMO 31
A. Performance Analyses 31
1) Transmission Delay 31
2) Redirecting Delay 32
3) Transmission Delay during Handover 33
B. Simulations 34
1) Handover in a Successful IEEE 802.16e Handover 36
2) Handover in a Failed IEEE 802.16e Handover 40
3) QoS-Handover 43
4) Wireless Link Error Rate > 0 44
VI. Summary and Discussion for Hi-NEMO 47
VII. The Proposed 2MR Scheme 48
A. Mobility Management in WiMAX 48
B. Network Architecture and Components for High-speed Trains 50
C. An Overview of 2MR Handover Protocol 51
D. Intra-LMA-Domain Handover 52
E. Inter-LMA-Domain Handover 54
VIII. Performance Evaluation for the 2MR Scheme 58
A. Intra-LMA-Domain Handover 59
B. Inter-LMA-Domain Handover 61
C. Performance of VoIP 63
1) Interarrival Jitter 63
2) Mean Opinion Score (MOS) 64
D. Layer-2 Handover Delay 65
IX. Summary and Discussion for the 2MR Scheme 67
A. The Permissible Time for a Seamless Handover 67
B. Handover into/out of the Mobile Hotspot 67
X. Conclusion 69
Reference 71

[1]V. Devarapalli, R. Wakikawa, A. Petrescu, and P. Thubert, "Network Mobility (NEMO) Basic Support Protocol," IETF RFC 3963, 2005.
[2]M. Calderon, C. J. Bernardos, M. Bagnulo, I. Soto, and A. d. l. Oliva, “Design and Experimental Evaluation of a Route Optimization Solution for NEMO,” IEEE Journal on Selected Areas in Communications, vol. 24, no. 9, pp. 1702-1716, Sep. 2006.
[3]Y.-C. Tseng, J.-J. Chen, and Y.-L. Cheng, “Design and Implementation of a SIP-Based Mobile and Vehicular Wireless Network With Push Mechanism,” IEEE Transactions on Vehicular Technology, vol. 56, no. 6, pp. 3408-3420, Nov. 2007.
[4]T. Ernst, and H.-Y. Lach, "Network Mobility Support Terminology," IETF RFC 4885, 2007.
[5]M. Russell, and G. L. Stuber, “Interchannel interference analysis of OFDM in a mobile environment,” in IEEE 45th Vehicular Technology Conference, 1995, pp. 820-824.
[6]T. Ernst, “Network Mobility Support in IPv6,” Ph.D Thesis, Department of Mathematics and Computer Science, Université Joseph Fourier, 2001.
[7]D. Forsberg, Y. Ohba, B. Patil, H. Tschofenig, and A. Yegin, "Protocol for Carrying Authentication for Network Access (PANA)," IETF, RFC 5191, 2008.
[8]J. Na, J. Choi, S. Cho, C. Kim, S. Lee et al., “A Unified Route Optimization Scheme for Network Mobility,” Lecture Notes in Computer Science, vol. 3260/2004, pp. 614-617, 2004.
[9]F. Mimoune, F. Nait-Abdesselam, T. Taleb, and K. Hashimoto, “Route Optimization for Large Scale Network Mobility Assisted by BGP,” in IEEE Global Telecommunications Conference (GLOBECOM). 2007, pp. 4659-4663.
[10]C.-M. Huang, C.-H. Lee, and J.-R. Zheng, “A Novel SIP-Based Route Optimization for Network Mobility,” IEEE Journal on Selected Areas in Communications, vol. 24, no. 9, pp. 1682-1691, Sep. 2006.
[11]T. Oiwa, M. Kunishi, M. Ishiyama, M. Kohno, and F. Teraoka, “A network mobility protocol based on LIN6,” in IEEE 58th Vehicular Technology Conference. VTC 2003-Fall., 2003, pp. 1984-1988.
[12]E. Perera, A. Seneviratne, and V. Sivaraman, “OptiNets: an architecture to enable optimal routing for network mobility,” in International Workshop on Wireless Ad-Hoc Networks, 2004, pp. 68-72.
[13]N. Moore, "Optimistic Duplicate Address Detection (DAD) for IPv6," IETF, RFC 4429, 2006.
[14]R. Koodli, "Mobile IPv6 Fast Handovers," IETF, RFC 5568, 2009.
[15]H. Jang, J. Jee, Y. Han, S. Park, and J. Cha, "Mobile IPv6 Fast Handovers over IEEE 802.16e Networks," IETF, RFC 5270, 2008.
[16]Y. H. Han, H. Jang, J. Choi, B. Park, and J. McNair, “A Cross-Layering Design for IPv6 Fast Handover Support in an IEEE 802.16e Wireless MAN,” IEEE Network, vol. 21, no. 6, pp. 54-62, Nov.-Dec. 2007.
[17]H. Yokota, and G. Dommety, "Mobile IPv6 Fast Handovers for 3G CDMA Networks," IETF, RFC 5271, 2008.
[18]Q. B. Mussabbir, W. Yao, Z. Niu, and X. Fu, “Optimized FMIPv6 Using IEEE 802.21 MIH Services in Vehicular Networks,” IEEE Transactions on Vehicular Technology, vol. 56, no. 6, pp. 3397-3407, Nov. 2007.
[19]Y.-H. Han, J. Choi, and S.-H. Hwang, “Reactive Handover Optimization in IPv6-Based Mobile Networks,” IEEE Journal on Selected Areas in Communications, vol. 24, no. 9, pp. 1758-1772, Sep. 2006.
[20]H. Soliman, C. Castelluccia, K. ElMalki, and L. Bellier, "Hierarchical Mobile IPv6 (HMIPv6) Mobility Management," IETF, RFC 5380, 2008.
[21]S. Gundavelli, K. Leung, V. Devarapalli, K. Chowdhury, and B. Patil, "Proxy Mobile IPv6," IETF, RFC 5213, 2008.
[22]A. T. Campbell, J. Gomez, S. Kim, A. G. Valko, C.-Y. Wan et al., “Design, implementation, and evaluation of cellular IP,” IEEE Personal Communications, vol. 7, no. 4, pp. 42-49, Aug. 2000.
[23]A. T. Campbell, J. Gomez, S. Kim, C.-Y. Wan, Z. R. Turanyi et al., “Comparison of IP micromobility protocols,” IEEE Wireless Communications, vol. 9, no. 1, pp. 72-82, 2002.
[24]P. Reinbold, and O. Bonaventure, “IP micro-mobility protocols,” IEEE Communications Surveys & Tutorials, vol. 5, no. 1, pp. 40-57, 2003.
[25]E. Perera, V. Sivaraman, and A. Seneviratne, “Survey on network mobility support,” SIGMOBILE Mob. Comput. Commun. Rev., vol. 8, no. 2, pp. 7-19, 2004.
[26]R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin, "Resource ReSerVation Protocol (RSVP)," IETF RFC 2205, 1997.
[27]D. Awduche, L. Berger, D. Gan, T. Li, V. Srinivasan et al., "RSVP-TE: Extensions to RSVP for LSP Tunnels," IETF RFC 3209, 2001.
[28]A. K. Talukdar, B. R. Badrinath, and A. Acharya, “MRSVP: A Resource Reservation Protocol for an Integrated Services Network with Mobile Hosts,” Wireless Networks, vol. 7, no. 1, pp. 5-19, 2001.
[29]C.-C. Tseng, G.-C. Lee, R.-S. Liu, and T.-P. Wang, “HMRSVP: A Hierarchical Mobile RSVP Protocol,” Wireless Networks, vol. 9, no. 2, pp. 95-102, 2003.
[30]M. A. Malik, S. S. Kanhere, M. Hassan, and B. Benatallah, “On-Board RSVP: An Extension of RSVP to Support Real-Time Services in On-Board IP Networks,” Lecture Notes in Computer Science, vol. 3326, pp. 264-275, 2004.
[31]M. Tlais, and H. Labiod, “Resource reservation for NEMO networks,” in 2005 International Conference on Wireless Networks, Communications and Mobile Computing, 2005, pp. 232-237.
[32]J.-T. Wang, Y.-Y. Hsu, and C.-C. Tseng, “A Bandwidth-sharing Reservation Scheme to Support QoS for Network Mobility,” in IEEE International Conference on Communications (ICC ''06), 2006, pp. 693-698.
[33]I. S.-R. o. I. S. 802.16-2004), "IEEE Standard for Local and metropolitan area networks Part 16: Air Interface for Broadband Wireless Access Systems," IEEE, 2009.
[34]Y. Wang, L. Fan, D. He, and R. Tafazolli, “Performance comparison of scheduling algorithms in network mobility environment,” Computer Communications, vol. 31, no. 9, pp. 1727-1738, 2008.
[35]A. Eryilmaz, and R. Srikant, “Fair resource allocation in wireless networks using queue-length-based scheduling and congestion control,” IEEE/ACM Transactions on Networking, vol. 15, no. 6, pp. 1333-1344, 2007.
[36]T. F. Abdelzaher, E. M. Atkins, and K. G. Shin, “QoS Negotiation in Real-Time Systems and Its Application to Automated Flight Control,” IEEE Transactions on Computers, vol. 49, no. 11, pp. 1170-1183, 2000.
[37]T. Narten, E. Nordmark, W. Simpson, and H. Soliman, "Neighbor Discovery for IP version 6 (IPv6)," IETF, RFC 4861, 2007.
[38]WiMAX Forum, "Network Architecture - Stage 2: Architecture Tenets, Reference Model and Reference Points," WMF-T32-001-R016v01, Nov. 2010.
[39]WiMAX Forum, "Network Architecture - Stage 3: Detailed Protocols and Procedure," WMF-T33-001-R016v01, Nov. 2010.
[40]I.-T. R. G.107, "IThe E-Model: A Computational Model for Use in Transmission Planning," ITU-T, 1998.
[41]S. Sengupta, M. Chatterjee, and S. Ganguly, “Improving Quality of VoIP Streams over WiMax,” IEEE Transactions on Computers, vol. 57, no. 2, pp. 145-156, 2008.

第一頁 上一頁 下一頁 最後一頁 top