跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/02/19 00:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:盧治綱
研究生(外文):CHIH-KANG LU
論文名稱:真空系統抽氣曲線之模擬與軟體開發
論文名稱(外文):Pump-Down Curve Simulation and Software Development for Vacuum Systems
指導教授:鍾添東鍾添東引用關係
口試委員:劉正良李佳翰
口試日期:2012-07-13
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:136
中文關鍵詞:抽氣真空腔體Extended Temkin 等溫線釋氣模擬
外文關鍵詞:Pump-downVacuum chamberExtended Temkin isothermOutgassingSimulation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:464
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出一方法來模擬真空腔體內壓力對於時間之抽氣曲線,所用之理論包括氣體定律、對於不同氣流狀態之氣導、管件之等效長度、釋氣、擴散與滲透等。為了能有效率地分析,本論文也開發出一模擬程式,其由MFC與MATLAB組成。MFC用來輸入必要之參數,其包括欲預估壓力範圍之起始壓力與目標壓力、腔體之體積與內表面積、抽氣管路之配置、真空幫浦之性能與氣體負荷,MATLAB則利用相關理論來計算抽氣曲線。描述真空腔體內質量平衡之統御方程式是由Temkin等溫線推導出。在計算完管件之等效長度並藉由雷諾數與紐森數將預估壓力範圍分為數段後,每段之抽氣曲線計算可分為三個步驟,其依序為計算管件之氣導、真空幫浦之有效抽氣速率與抽氣時間。本論文所模擬之抽氣曲線與兩不同真空系統之實驗進行比較,除此之外,其也與商業軟體VacTran之模擬結果相較。由相較結果得知,本論文所提出之模擬程式可確地預估從低真空度至高真空度之抽氣曲線。

This paper presents a method to simulate pressure versus time pump down curve for vacuum chambers. Related basic theories, including gas laws, conductance for several kinds of flow regimes, equivalent length for pipes, outgassing, diffusion, and permeation etc., are used to simulate the pump-down curve. The simulation program consists of a MFC module and a MATLAB module. The MFC module is used to input necessary parameters, including start and target pressure for desired simulation pressure range, volume and inner surface area of vacuum chambers, configuration of pumping lines, performance of vacuum pumps, and gas loads. The MATLAB module deals with the pump-down curve calculation based on related theories. The governing equation of the conservation of mass in a pumped vacuum chamber is derived from extended Temkin isotherm. After equivalent length for pipes are calculated and the simulation pressure range is separated into several segments by Knudsen’s number and Reynolds’ number, the pump-down curve of each segment is simulated by three steps, including calculating the conductance of pipes for corresponding gas flow regimes, the effective pumping speed of vacuum pumps and finally pump-down time. The simulated results are compared with the experiment of two different vacuum systems and the results simulated by the commercial software, VacTran. The developed program can simulate the pump-down curve with good accuracy in the range from low vacuum pressure to high vacuum pressure.

口試委員會審定書 I
Acknowledgement II
摘要 III
ABSTRACT IV
Table of Contents V
List of Figure VIII
List of Tables XV
List of Symbol XVI
Chapter 1 Introduction 1
1.1 Paper review 1
1.2 Reach motivation and purpose 8
1.3 Outline 9
Chapter 2 Theories for pump-down curve simulation 11
2.1 Conductance of long round tube 11
2.2 The concept of equivalent lengths 16
2.3 Permeation process 18
2.4 Hydrogen outgassing 21
2.5 Model of simulating pump-down curve 22
2.6 Pump-down curve simulation by VacTran 26
Chapter 3 Procedure of pump-down curve simulation 29
3.1 Procedure of simulation and program structure 29
3.1.1 Calculating the equivalent length of pipes 31
3.1.2 Calculating the critical pressure of gas flow regime 33
3.1.3 Calculating the conductance of pipes 35
3.1.4 Calculating the effective pumping speed 39
3.1.5 Calculating pump down curve 40
3.2 Introduction of MFC module for parameters input 41
Chapter 4 Pump-down experiment 46
4.1 EUV system 46
4.1.1 Specification 46
4.1.2 Experiment results 53
4.2 E-Beam system 55
4.2.1 Specification 56
4.2.2 Experiment results 61
Chapter 5 Simulation and comparison 66
5.1 EUV system 66
5.1.1 Simulation by this paper 66
5.1.2 Simulation by VacTran 74
5.1.3 Comparison 77
5.2 E-Beam system 81
5.2.1 Simulation by this paper 82
5.2.2 Simulation by VacTran 90
5.2.3 Comparison 93
Chapter 6 Conclusions and suggestions 102
6.1 Conclusions 102
6.2 Suggestions 103
References 105
Appendix A The VacTran setting for EUV system 110
Appendix B The MFC setting for EUV system 123
Appendix C The MATLAB module 133
作者簡歷 136


[1]B.M. Shipilevsky and V.G. Glebovsky, “Competition of bulk and surface processes in the kinetics of hydrogen and nitrogen evolution from metals into vacuum”, Surface Sci., Vol. 216, pp. 509-527, 1989.
[2]John F. O’Hanlon, “A User’s Guide to Vacuum Technology”, John Wiley & Sons, Inc., pp. 25-76, 2003.
[3]S. Brunauer, P. H. Emmett and E. Teller, “Adsorption of Gases in Multimolecular Layers”, J. Am. Chem. Soc. Vol. 60, pp. 309-319, 1938.
[4]Irving Langmuir, “The constitution and fundamental properties of solids and liquids. Part I. solids”, J. Am. Chem. Soc. Vol. 38, No. 11, pp. 2221–2295, 1916.
[5]P. A. Redhead, “Modeling the Pump-Down of a Reversibly Adsorbed Phase. II. Multilayer coverage”, J. Vac. Sci. Technol. A, Vol. 13, pp. 2791-2796, 1995.
[6]R. Calder and G. Lewin, “Reduction of stainless-steel outgassing in ultra-high vacuum”, Brit. J. Appl. Phys. Vol. 18, pp. 1459-1472, 1967.
[7]B.C Moore, “Recombination limited outgassing of stainless steel“, J. Vac. Sci. Technol. A, Vol. 13, pp.545-548, 1995.
[8]V. Nemanic and T. Bogataj, “Outgassing of thin wall stainless steel chamber”, Elsevier Science Ltd, Vol. 50, pp. 431-437, 1998.
[9]M.A. Pick and K. Sonnenberg, “A model for atomic hydrogen-metal interactions-application to recycling, recombination and permeation”, J. Nucl. Mater. Vol. 131, pp. 208-220, 1985.
[10]M.A. Pick, “The dependence of the hydrogen concentration in metals on the surface impurities”, J. Nucl. Mater. Vol. 145-147, pp. 297-300, 1987.
[11]S.M. Myers and W.R. Wampler, “Trapping and surface recombination of ionimplanted deuterium in stainless”, J. Appl. Phys. Vol. 56, pp. 1561-1571, 1984.
[12]Vincenc Nemanic and Janez Setina, “Experiments with a thin-walled stainless-steel vacuum chamber”, J. Vac. Sci. Technol. A, Vol. 18, pp. 1789-1793, 2000.
[13]Robert A. Langley, “Hydrogen trapping, diffusion and recombination in austenitic stainless steel”, J. Nucl. Mater. Vol. 128-129, pp. 622-627, 1984.
[14]J.H. Austin, T.S. elleman and K. verghese, “Tritium diffusion in zircaloy-2 in the temperature range −78 to 204°C”, J. Nucl. Mater. Vol. 51, pp. 321-329, 1973.
[15]K. Akaishi, M. Makausga and Y. Funato, “Simulation of hydrogen outgassing in ultrahigh vacuum chamber and fusion device by recombination limited model”, J. Vac. Sci. Technol. A, Vol. 20, pp.848-856, 2002.
[16]P. A. Redhead, “Modeling the Pump-Down of a Reversibly Adsorbed Phase. I. Monolayer and Submonolayer Initial Coverage”, J. Vac. Sci. Technol. A, Vol. 13, pp. 467-475, 1995.
[17]Minxu Li and H.F. Dylla, “Model for water outgassing from metal surface”, J. Vac. Sci. Technol. A, Vol. 11, pp. 1702-1707, 1994.
[18]Minxu Li and H.F. Dylla, “Model for water outgassing from metal surface. II”, J. Vac. Sci. Technol. A, Vol. 12, pp. 1772-1777, 1994.
[19]Minxu Li and H.F. Dylla, “Modeling for water outgassing from metal surface. III”, J. Vac. Sci. Technol. A, Vol. 13, pp. 1872-1878, 1995.
[20]S. S. Hong, K. H. Chung, Y. H. Shin and I. Arakawa, “Generation of extremely high vacuum by ordinary procedures with a SUS304 vacuum chamber and total and partial pressure measurement by hot cathode ionization gauges and a quadrupole mass spectrometer”, Meas. Sci. Technol. Vol. 17, pp. 62-68, 2006.
[21]L.D. Hinkle, “Effect of purge pressure on desorbing water removal rate”, J. Vac. Sci. Technol. A, Vol. 22, pp. 1799-1803, 2004.
[22]Ko Yamazaki, Junichi Shike, Motoi Yamagata, Masahiro Kitanom, Michiru Nishiwaki and Shigeki Kato, “High-speed pumping to UHV”, Vacuum, Vol. 84, pp.756-759, 2010.
[23]Yao Zhi Hu and Sing Pin Tay, “Monitoring and purging dynamics of trace gaseous impurity in atmospheric pressure rapid thermal process”, J. Vac. Sci. Technol. A, Vol. 21, pp.676-682, 2003.
[24]Bojan Zajec and Vincenc Nemanic, “Hydrogen pumping by austenitic stainless steel”, J. Vac. Sci. Technol. A, Vol. 23, pp.322-329, 2005.
[25]Bernardini, M. Braccini, S. De Salvo, R. Di Virgilio, A. Gaddi, A. Gennai, A. Genuini, G. Giazotto, A. Losurdo, G. Pan, H. B. Pasqualetti, A. Passuello, D. Popolizio, P. Raffaelli, F. Torelli, G. Zhang, Z. Bradaschia, C. Del Fabbro, R. Ferrante, I. Fidecaro, F. La Penna, P. Mancini, S. Poggiani, R. Narducci, P. Solina, A. Valentini and R. Poggiani, “Air bake-out to reduce hydrogen outgassing from stainless steel”, J. Vac. Sci. Technol. A, Vol. 16, pp.188-193, 1998.
[26]C.D. Park and S.M. Chung, “Reduction in hydrogen outgassing from stainless steels by a medium-temperature hat treatment”, J. Vac. Sci. Technol. A, Vol. 26, pp.1166-1171, 2008.
[27]S.S. Hong, Y.H. Shin and J.T. Kim, “Residual gas survey of stainless steel 304 extreme high vacuum chamber with hot cathode ionization gauge”, Measurement, Vol. 41, pp. 1026-1031, 2008.
[28]Y. Tito Sasaki, “Reducing SS 304/316 hydrogen outgassing to 2×10-15torr l/cm2/ s”, J. Vac. Sci. Technol. A, Vol. 25, pp.1309-1311, 2007.
[29]S. Watanabe, S. Kurokouchi and M. Aono, “Pumping properties using an electrolytic polished stainless”, J. Vac. Sci. Technol. A, Vol. 16, pp.3084-3087, 1998.
[30]C. Benvenuti, P. Chiggiato, F. Cicoira and V. Ruzinoc, “Decreasing surface outgassing by thin film getter coatings”, Vacuum, Vol. 50, pp. 57-63, 1998.
[31]H.C. Hseuh and Xiuhua Cui, “Outgassing and desorption of the stainless-steel beam tubes after different degassing treatment”, J. Vac. Sci. Technol. A, Vol. 7, pp.2418-2422, 1989.
[32]Alexander J. Smits, Hean-Paul Dussauge, “Turbulent shear layers in supersonic flow”, Birkhauser, pp. 46, 2006.
[33]Dr. Walter Umrath, “Fundamentals of Vacuum Technology”, pp. 13, 1998.
[34]呂登復, “實用真空技術”, 第一版, 國興出版社, p. 340, 2007
[35]Crane, “Flow of Fluids through valves, fittings and pipe”, Crane Co., pp. 2-8, 1982.
[36]P. Sturm, M. Leuenberger, C. Sirignano, R. E. M. Neubert, H. A. J. Meijer, R. Langenfelds, W. A. Brand and Y. Tohjima, “Permeation of atmospheric gases through polymer O-rings used in flasks for air sampling”, J. Geophys. Res. Vol. 109, pp.4309-4317, 2004.
[37]George B. Thomas, “THOMAS’ CALCULUS”, 11th edition, Greg Tobin, pp. 1192-1200, 2005
[38]VacTran manual, http://www.vactran.com/Files/VacTran%203%20Manual.pdf
[39]P. Clausing, “The Flow of Highly Rarefied Gases through Tubes of Arbitrary Length”, J. Vac. Sci. Technol. 8, pp.636-646, 1971.
[40]D.H. Davis, “Monte Carlo calculation of molecular flow rates through a cylindrical elbow and pipes of other shapes”, J. Appl. Phys. Vol. 31, pp. 1169-1176, 1960.
[41]Karl Jousten, “Handbook of vacuum technology”, Wiley-VCH Co., pp. 145, 2008.
[42]Chieh-Jen Yang, “Design and Analysis of Ultra-high Vacuum Systems”, NTU thesis, pp. 38-54, 2007.
[43]P. A. Redhead, J. P. Hobson, and E. V. Kornelsen, “The Physical Basis of Ultrahigh Vacuum”, American Inst. of Physics, pp. 405-406, 1968.
[44]Dr. Walter Umrath, “Fundamentals of Vacuum Technology”, pp. 51-52, 2007.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top