|
1.陳韋良, 黃信富, 共旋與多尺度描述方法對模擬懸浮微粒電流變液流變特性之影響 第35屆中華民國力學年會第15屆學生論文競賽 2.Cebers, A.O. E. Lemaire, and L. Lobry, Internal rotations in dielectric suspensions. Magnetohydrodyn. 36 (2000) 347-364. 3.Cebers, A.O. E. Lemaire, and L. Lobry, Flow modification induced by Quincke rotation in a capillary. Int. J. Mod. Phys. B16 (2002) 2063-2069. 4.Lemaire, E. L. Lobry, and N. Pannacci, Flow rate increase by electrorotation in a capillary. J. Electrostat. 64 (2006) 586-590. 5.Lemaire, E. L. Lobry, and N. Pannacci, F. Peters, Viscosity of an electro-rheological suspension with internal rotations. J. Rheol. 52 (2008) 769-783. 6.Lobry, L., and E. Lemaire, Viscosity decrease induced by a DC electric field in a suspension, J. Electrostat. 47 (1999) 61-69. 7.Huang, H.F. Electromechanics and Electrorheology of Fluid Flow With Internal Micro-particle Elecrtrorotation. Ph.D dissertation, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 2010. 8.Huang, H.F., M. Zahn, and E. Lemaire, Continuum modeling of micro-particle electrorotation in Couette and Poiseuille flows-The zero spin viscosity limit. J. Electrostat. 68(2010) 345-359. 9.Huang, H.F., M. Zahn, and E. Lemaire, Negative electrorheological responses of micro-polar fluids in the finite spin viscosity small velocity limit. I. Coutte flow geometries. J. Electrostat. 69 (2011) 442-455. 10.Huang, H.F., M. Zahn, F. Peters, and E. Lemaire, Negative electrorheological responses of micro-polar fluids in the finite spin viscosity small velocity limit. II. Poiseuille flow geometries. J. Electrostat., accepted (2012). 11.Perez, C.L. and J.D. Posner, Tornadoes in a microchannel. Phys. Fluids. 21 (2009) 12.Atten, P.C. Boissy, and J.N. Foulc, The role of conduction in electrorheological fluids:from interaction between particles to structuration of suspensions. J. Electrostat. 40-41 (1997) 3-12. 13.Klingenberg, D.J. and C.F. Zukoski IV, Studies on the steady-shear behavior of electrorheological suspensions. Langmuir 6 (1990) 15-24. 14.Hemp, J. Theory of dilute electro-rheological fluids. Proceedings: Mathematical and Physical Sciences,Vol. 434 (1991) 297-315. 15.Marshall, L. and C.F. Zukoski IV, Effects of electric-fields on the rheology of non-aqueous concentrated suspensions. J. Chem. SOC.,F araday Trans. I , 85(9)(1989) 16.Halsey, T.C. Electrorheological fluids structure and dynamics. Advanced materials 5(1993) 711-718. 17.Lemaire, E., G. Bossis, and Y. Grasselli, Rheological behavior of electrorheological fluids. Langmuir 8 (1992) 2957-2961. 18.Peters, F., L. Lobry, A. Khayari, and E. Lemaire, Size effect in Quincke rotation: A numerical study. J. Chem. Phys. 130 (2009) 194905 19.Lemaire, E. , G. Bossis, Yield stress and wall effects in magnetic colloidal suspensions. J. Phys. D: Appl. Phys. 24(1991) 1473-1477 20.Winslow, W.M. Induced fibration of suspensions. J. Appl. Phys. 20 (1949) 1137-1140. 21.Halsey, T.C. Electrorheological fluids. Science 258 (1992) 761-766 22.Foulc, J.N., P. Atten, and N. Felici, Macroscopic model of interaction between particles in an electrorheological fluid. J. Electrostat. 33 (1994) 103-112. 23.Boissy, C., P. Atten, and J.N. Foulc, On a negative electrorheological effect. J. Electrostat. 35 (1995) 13-20. 24.Klass D. L. and T. W. Martinek, Electroviscous Fluids. I. Rheological Properties. J. Appl. Phys. 38 (1967) 67-74. 25.Klass D. L. and T. W. Martinek, Electroviscous Fluids. II. Electrical Properties. J. Appl. Phys. 38 (1967) 75-80. 26.Wu, C.W., Y. Chen, X. Tang, and H. Conrad, Conductivity and force between particles in a model electrorheological fluid: I. Conductivity. Int. J. Mod. Phys. B 10 (23-24) (1996). 3315-3325. 27.Wu, C.W., Y. Chen, X. Tang, and H. Conrad, Conductivity and force between particles in a model electrorheological fluid: II. Interaction force. Int. J. Mod. Phys. B 10 (23-24) (1996). 3327-3334. 28.Wu, C.W. and H. Conrad, Negative electrorheological effect and electrical properties of a Teflon/silicone oil suspension. J.Rheol. 41 (1997) 267-281. 29.Wu, C.W., Y. Chen, and H. Conrad, Electrorheology of a zeolite/ silicone oil suspension with DC and AC fields. J. Phys. Chem.B 112 (1998) 6767-6771 30.Maxwell, J.C. A Treatise on Electricity and Magnetism, Third ed, Vol 1, Chap 9, Art 310-314, Clarendon Press, Oxford, p 435 1891. 31.Wagner, K.W. Arch Electrotech . 2 (1914): 371 32.Cebers, A.O. Internal rotation in the hydrodynamics of weakly conducting dielectric suspensions. Mekhanika Zhidkosti i Gaza 2 (1980) 86-93 (see also Fulid Dyn. 15 (1980) 245-251). 33.Pannacci, N., E. Lemaire, and L. Lorby, Rheology and structure of a suspension of particles subject to Quincke rotation. Rheol. Acta 46 (2007) 899-904. 34.Pannacci, N., L. Lorby., and E. Lemaire, How insulating particles increase the conductivity of a suspension. Phys. Rev. Lett. 99 (2007) 094503. 35.Peters, F., L. Lorby., and E. Lemaire, Pressure-driven flow of a micro-polar fluid: Measurement of the velocity profile. J. Rheol. 54 (2) (2010) 311-325. 36.Quincke, G. Ueber rotationen im constantan electrischen felde. Ann. Phys. Chem. 59 (1896) 417-486. 37.Melcher, J.R. and G.I. Taylor, Electrohydrodynamics: a review of the role of interfacial shear stresses. Annu. Rev. Fluid Mech. 1(1969) 111-146. 38.Melcher, J.R. Electric fields and moving media. IEEE Trans on edu. E-17 (1974) 100-110. 39.Melcher, J.R. Continuum Electromechanics. Cambridge, MA: The MIT Press. 1981. 40.Jones, T.B. Quincke rotation of spheres. IEEE Trans. Ind. Appl. IA-20 (1984) 845-849. 41.Jones, T.B. Electromechanics of Particles. New York, NY: Cambridge University Press. 1995. 42.Feng, S., A. L. Graham, J. R. Abbott, and H. Brenner, Anti-symmetric stresses in suspensions: vortex viscosity and energy dissipation. J. Fluid Mech. 563(2006), 97-122 43.Einstein, A . A new determination of the molecular dimensions. Annalen der physic 19(1906) 289-306. 44.Brenner, H. Rheology of two-phase systems. Annu. Rev. Fluid Mech. 2 (1970) 137-176. 45.Fredrickson, A.G. Principles and applications of rheology. Englewood Cliffs, N.J. : Prentice-Hall, 1964 46.Zahn M, and L.L. Pioch, Ferrofluid flows in AC and traveling wave magnetic fields with effective positive, zero or negative dynamic viscosity. J. Magn. Magn. Mater. 201 (1999) 144-148. 47.Zahn M, and L.L. Pioch, Magnetizable fluid behaviour with effective positive, zero or negative dynamic viscosity. Indian J. Eng. Mater. Sci. 5(1998) 400-410.
|