跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.83) 您好!臺灣時間:2024/12/06 12:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳韋良
研究生(外文):Wei-Liang Chen
論文名稱:多尺度共旋描述方法對模擬電流變液有效黏性之影響
論文名稱(外文):Influences of multi-scale co-rotational descriptions on modeling the effective viscosity of electrorheological liquids
指導教授:黃信富
指導教授(外文):Hsin-Fu Huang
口試委員:李雨簡瑞與
口試日期:2012-06-29
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:114
中文關鍵詞:賓漢流體正電流變現象負電流變現象Quincke電旋轉連體力學反對稱/矩應力有效黏性
外文關鍵詞:Bingham plastic fluidnegative electrorheological phenomenapostive electrorheological phenomenaQuincke electrorotationcontinuum anti-symmetric /couple stresseffective viscosity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:366
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
基於懸浮在黏性流體中之懸浮微粒群其Quincke電旋轉運動所引發之負電流變現象為現今電流變學領域之一新興研究主題。自1980年代開始,Cebers與Lemaire等團隊即積極研究並建立基於單尺度單一顆懸浮微粒Quincke電旋轉動力分析對巨觀有效黏性影響之理論。此套理論雖廣為學界所接受,但近年以流變儀量測所得之實驗結果和Cebers與Lemaire之理論預測有所分歧。為此,Huang 與Huang et al.由連體力學中反對稱/矩應力之原理出發,引入多尺度共旋座標之描述方法以及連體角動量黏性擴散之損耗等觀點探討分析與模擬Quincke 電旋轉運動所引發的負電流變現象,其結果除推翻主流理論外,更大幅提升了理論預測的準確性。但,多尺度共旋座標之描述方法或是連體角動量黏性擴散之損耗何者對Quincke負電流變現象之準確預測影響較多仍尚不明朗,且角動量黏性擴散損耗之引入在學界中仍存有諸多爭議。
因此,吾人以平板庫頁流流場為幾何基礎,引入並利用多尺度共旋座標描述對單尺度微粒旋轉動力分析理論以及電流變液平衡極化與流體極化鬆弛方程進行修正,在忽略連體角動量黏性擴散之機制下,分析與探討Quincke負電流變平板流,其有效黏性相較於未引入多尺度共旋座標描述之單尺度微粒旋轉動力分析所得之有效黏性兩者之間的差異。結果發現,在忽略角動量黏性擴散之機制下,多尺度共旋與未含多尺度共旋兩種描述法之間雖有不小的差異,但引入多尺度共旋描述方法並未明顯提升Quincke負電流變平板流流變特性預測之準確性。
另一方面,Klingenberg與Zukoski發現正電流變現象之電流變液,其流體流變運動之特性具有類似於賓漢流體之相似特性。為延伸多尺度共旋座標描述法之研究,吾人借重Klingenberg與Zukosk實驗觀測所得之相關正電流變參數,並同時利用單尺度微粒旋轉動力分析與多尺度共旋描述方法對正電流變現象進行分析探討與比較。最後吾人發現,兩種尺度描述法所得之有效黏性增加之結果間亦有相當之差異。
經由以上研究,結果顯示,雖然引入多尺度共旋描述方法並無法有效提升電流變液流變特性與有效黏性預測之準確度,本論文所得之新的分析結果仍與傳統單尺度單微粒旋轉動力分析所得結果有相當的出入。此一結果暗示,若為了提升預測準確度,吾人亦須將角動量黏性擴散損耗以及懸浮微粒受電、流場作用所形成之微結構列入考量範圍,這也將成為本研究團隊未來的研究方向。


The negative electrorheological (ER) phenomena induced by insulating dielectric solid micro-particle Quincke electrorotation suspended within a dielectric viscous liquid has become an emerging field of scientific research in recent years. In order to predict and describe the macroscopic hydrodynamics and electrorheological characteristics of this negative ER phenomena, Cebers and Lemaire et al. developed an electrorheological effective viscosity theory, which is based on a single-scale micro-particle electrorotational dynamics analysis. On the other hand, Huang and Huang et al. introduced a multi-scale co-rotational description for ER fluid polarization and emphasized the mechanism of angular momentum viscous diffusion loss (spin viscosity) under a continuum anti-symmetric/couple stress framework leading to a more accurate theoretical prediction on the negative ER characteristics as compared to the single-scale micro-particle electrorotational dynamics analysis. In this thesis, while neglecting angular momentum viscous diffusion loss (or couple stress), we combine the advantages of the previous two theories to study the influences of multi-scale co-rotational descriptions on improving the theoretical modeling of the Quincke rotation induced negative ER flow characteristics of particle-liquid suspensions.
On the other hand, the experimental observations of Klingenberg and Zukoski show that positive ER flow characteristics of the particle-liquid suspension in Couette flow geometries has Bingham plastic-like properties. As a further varification of the multi-scale co-rotational description, we next study the postive ER flow characteristics using both single-scale micro-particle electrorotational dynamics analysis, and multi-scale co-rotational description, with the electrical and viscometric properties given in Klingenberg and Zukoski. The investigations also emphasize on how the influences of multi-scale co-rotational descriptions improve the theoretical modeling of the rotation induced postive ER flow characteristics for particle-liquid suspensions.
Results show that as compared to the single-scale micro-particle electrorotational dynamics analysis, there is no significant improvement on the accuracy caused by introducing the co-rotational multi-scale descriptions in modeling and analyzing the rheological characteristics for both negative and positive ER phenomena in spite of the significant differences in the two sets of results. In other words, in order to improve the accuracy of the theoretical modeling and simulation of the ER effects induced by internal micro-particle rotation, we not only need to pay attention to the details of the co-rotational multi-scale descriptions of the fluid flow, but also need to consider the possible angular momentum viscous diffusion loss (or couple stress) that may exist in the ER flow field.


口試委員會審定書........................................................................................i
誌謝……......................................................................................................iii
中文摘要.......................................................................................................v
英文摘要.....................................................................................................vii
聲明..............................................................................................................ix
目錄…………………………………………………………………………I
表目錄…………………………………………………………………......V
圖目錄…………………………………………………………………….VI
符號表…………………………………………………………………...XII
第一章 緒論……………………………………………………………...1
1.1電流變液之組成…………………………………………………..1
1.2正、負電流變現象成因與差異…………………………………..1
1.3文獻回顧…………………………………………………………...2
1.4提升預測準確性的因素…………………………………………..3
1.5本文的研究動機與方向…………………………………………..4
第二章 單一尺度微粒電旋轉動力分析與巨觀有效黏性……………...5
2.1物理模型…………………………………………………………..5
2.2 旋轉微粒受外加均勻直流電場作用時之電位、電場、與偶極矩.7
2.3 旋轉動力分析………………………………………………….....8
2.4 正與負電流變條件下微粒電力旋轉之轉速分析.......................11
2.5以單一微觀尺度概念計算所得之巨觀有效黏性……………………21
2.6負電流變現象與巨觀有效黏性降.................................................22
2.7單尺度C&L理論負電流變現象分析...........................................23
2.7-1單尺度C&L理論之負電流變衰減極化…………………23
2.7-2單尺度C&L理論之負電流變巨觀總剪應力與有效黏性.28
2.8正電流變現象與巨觀有效黏性升.................................................32
2.9單尺度C&L理論正電流變現象分析..........................................33
2.9-1單尺度C&L理論之正電流變衰減極化…………………34
2.9-2單尺度C&L理論之正電流變巨觀總剪應力與有效黏性.39
2.10 C&L團隊單一微粒尺度動力分析理論之完善性….................44
第三章 利用多尺度共旋座標概念計算巨觀電流變特性.....................45
3.1巨觀流場模型................................................................................45
3.2 「龍捲風」模型,多尺度共旋座標與旋轉咖啡杯之佐證…….47
3.3 提出修正…………………………………………………….......47
3.4 引入多尺度共旋概念修正後之電流變現象分析.......................49
3.4-1 引入多尺度共旋概念修正後之負電流變衰減極化…….50
3.4-2 引入多尺度共旋概念修正後之正電流變衰減極化…….54
第四章 引入多尺度共旋概念的電流變液巨觀黏性………………….59
4.1負電流變現象與巨觀有效黏性降………………………………59
4.2負電流變現象巨觀有效應力與有效黏性………………………60
4.3正電流變現象與巨觀有效黏性升……………………………….66
4.4正電流變現象巨觀有效應力與有效黏性………………………67
第五章 結果討論與比較……………………………………………….73
5.1 負電流變現象…………………………………………………...73
5.1-1 衰減極化………………………………………………….73
5.1-2 巨觀有效應力…………………………………………….80
5.1-3 有效黏性………………………………………………….84
5.2 正電流變現象…………………………………………………...88
5.2-1 衰減極化………………………………………………….88
5.2-2巨觀有效應力……………………………………………..95
5.2-3有效黏性….…………………………………………….....99
第六章 結論與未來展望.......................................................................103
附錄…………………………………………...........................................105
附錄一………………………………………………………………105
附錄二………………………………………………………………109
參考文獻...................................................................................................111


1.陳韋良, 黃信富, 共旋與多尺度描述方法對模擬懸浮微粒電流變液流變特性之影響 第35屆中華民國力學年會第15屆學生論文競賽
2.Cebers, A.O. E. Lemaire, and L. Lobry, Internal rotations in dielectric suspensions. Magnetohydrodyn. 36 (2000) 347-364.
3.Cebers, A.O. E. Lemaire, and L. Lobry, Flow modification induced by Quincke rotation in a capillary. Int. J. Mod. Phys. B16 (2002) 2063-2069.
4.Lemaire, E. L. Lobry, and N. Pannacci, Flow rate increase by electrorotation in a capillary. J. Electrostat. 64 (2006) 586-590.
5.Lemaire, E. L. Lobry, and N. Pannacci, F. Peters, Viscosity of an electro-rheological suspension with internal rotations. J. Rheol. 52 (2008) 769-783.
6.Lobry, L., and E. Lemaire, Viscosity decrease induced by a DC electric field in a suspension, J. Electrostat. 47 (1999) 61-69.
7.Huang, H.F. Electromechanics and Electrorheology of Fluid Flow With Internal Micro-particle Elecrtrorotation. Ph.D dissertation, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 2010.
8.Huang, H.F., M. Zahn, and E. Lemaire, Continuum modeling of micro-particle electrorotation in Couette and Poiseuille flows-The zero spin viscosity limit. J. Electrostat. 68(2010) 345-359.
9.Huang, H.F., M. Zahn, and E. Lemaire, Negative electrorheological responses of micro-polar fluids in the finite spin viscosity small velocity limit. I. Coutte flow geometries. J. Electrostat. 69 (2011) 442-455.
10.Huang, H.F., M. Zahn, F. Peters, and E. Lemaire, Negative electrorheological responses of micro-polar fluids in the finite spin viscosity small velocity limit. II. Poiseuille flow geometries. J. Electrostat., accepted (2012).
11.Perez, C.L. and J.D. Posner, Tornadoes in a microchannel. Phys. Fluids. 21 (2009)
12.Atten, P.C. Boissy, and J.N. Foulc, The role of conduction in electrorheological fluids:from interaction between particles to structuration of suspensions. J. Electrostat. 40-41 (1997) 3-12.
13.Klingenberg, D.J. and C.F. Zukoski IV, Studies on the steady-shear behavior of electrorheological suspensions. Langmuir 6 (1990) 15-24.
14.Hemp, J. Theory of dilute electro-rheological fluids. Proceedings: Mathematical and Physical Sciences,Vol. 434 (1991) 297-315.
15.Marshall, L. and C.F. Zukoski IV, Effects of electric-fields on the rheology of non-aqueous concentrated suspensions. J. Chem. SOC.,F araday Trans. I , 85(9)(1989)
16.Halsey, T.C. Electrorheological fluids structure and dynamics. Advanced materials 5(1993) 711-718.
17.Lemaire, E., G. Bossis, and Y. Grasselli, Rheological behavior of electrorheological fluids. Langmuir 8 (1992) 2957-2961.
18.Peters, F., L. Lobry, A. Khayari, and E. Lemaire, Size effect in Quincke rotation: A numerical study. J. Chem. Phys. 130 (2009) 194905
19.Lemaire, E. , G. Bossis, Yield stress and wall effects in magnetic colloidal suspensions. J. Phys. D: Appl. Phys. 24(1991) 1473-1477
20.Winslow, W.M. Induced fibration of suspensions. J. Appl. Phys. 20 (1949) 1137-1140.
21.Halsey, T.C. Electrorheological fluids. Science 258 (1992) 761-766
22.Foulc, J.N., P. Atten, and N. Felici, Macroscopic model of interaction between particles in an electrorheological fluid. J. Electrostat. 33 (1994) 103-112.
23.Boissy, C., P. Atten, and J.N. Foulc, On a negative electrorheological effect. J. Electrostat. 35 (1995) 13-20.
24.Klass D. L. and T. W. Martinek, Electroviscous Fluids. I. Rheological Properties. J. Appl. Phys. 38 (1967) 67-74.
25.Klass D. L. and T. W. Martinek, Electroviscous Fluids. II. Electrical Properties. J. Appl. Phys. 38 (1967) 75-80.
26.Wu, C.W., Y. Chen, X. Tang, and H. Conrad, Conductivity and force between particles in a model electrorheological fluid: I. Conductivity. Int. J. Mod. Phys. B 10 (23-24) (1996). 3315-3325.
27.Wu, C.W., Y. Chen, X. Tang, and H. Conrad, Conductivity and force between particles in a model electrorheological fluid: II. Interaction force. Int. J. Mod. Phys. B 10 (23-24) (1996). 3327-3334.
28.Wu, C.W. and H. Conrad, Negative electrorheological effect and electrical properties of a Teflon/silicone oil suspension. J.Rheol. 41 (1997) 267-281.
29.Wu, C.W., Y. Chen, and H. Conrad, Electrorheology of a zeolite/ silicone oil suspension with DC and AC fields. J. Phys. Chem.B 112 (1998) 6767-6771
30.Maxwell, J.C. A Treatise on Electricity and Magnetism, Third ed, Vol 1, Chap 9, Art 310-314, Clarendon Press, Oxford, p 435 1891.
31.Wagner, K.W. Arch Electrotech . 2 (1914): 371
32.Cebers, A.O. Internal rotation in the hydrodynamics of weakly conducting dielectric suspensions. Mekhanika Zhidkosti i Gaza 2 (1980) 86-93 (see also Fulid Dyn. 15 (1980) 245-251).
33.Pannacci, N., E. Lemaire, and L. Lorby, Rheology and structure of a suspension of particles subject to Quincke rotation. Rheol. Acta 46 (2007) 899-904.
34.Pannacci, N., L. Lorby., and E. Lemaire, How insulating particles increase the conductivity of a suspension. Phys. Rev. Lett. 99 (2007) 094503.
35.Peters, F., L. Lorby., and E. Lemaire, Pressure-driven flow of a micro-polar fluid: Measurement of the velocity profile. J. Rheol. 54 (2) (2010) 311-325.
36.Quincke, G. Ueber rotationen im constantan electrischen felde. Ann. Phys. Chem. 59 (1896) 417-486.
37.Melcher, J.R. and G.I. Taylor, Electrohydrodynamics: a review of the role of interfacial shear stresses. Annu. Rev. Fluid Mech. 1(1969) 111-146.
38.Melcher, J.R. Electric fields and moving media. IEEE Trans on edu. E-17 (1974) 100-110.
39.Melcher, J.R. Continuum Electromechanics. Cambridge, MA: The MIT Press. 1981.
40.Jones, T.B. Quincke rotation of spheres. IEEE Trans. Ind. Appl. IA-20 (1984) 845-849.
41.Jones, T.B. Electromechanics of Particles. New York, NY: Cambridge University Press. 1995.
42.Feng, S., A. L. Graham, J. R. Abbott, and H. Brenner, Anti-symmetric stresses in suspensions: vortex viscosity and energy dissipation. J. Fluid Mech. 563(2006), 97-122
43.Einstein, A . A new determination of the molecular dimensions. Annalen der physic 19(1906) 289-306.
44.Brenner, H. Rheology of two-phase systems. Annu. Rev. Fluid Mech. 2 (1970) 137-176.
45.Fredrickson, A.G. Principles and applications of rheology. Englewood Cliffs, N.J. : Prentice-Hall, 1964
46.Zahn M, and L.L. Pioch, Ferrofluid flows in AC and traveling wave magnetic fields with effective positive, zero or negative dynamic viscosity. J. Magn. Magn. Mater. 201 (1999) 144-148.
47.Zahn M, and L.L. Pioch, Magnetizable fluid behaviour with effective positive, zero or negative dynamic viscosity. Indian J. Eng. Mater. Sci. 5(1998) 400-410.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top