跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/01/23 05:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳咨亨
研究生(外文):Tzu-Heng Wu
論文名稱:利用微流體操控技術及多倫反應製作金屬微結構並應用於微流體元件開發
論文名稱(外文):Fabrication of thick metallic microstructures using microfluidic technique and Tollens’ reaction for microfluidic components
指導教授:沈弘俊沈弘俊引用關係
指導教授(外文):Horn-Jiunn Sheen
口試委員:吳光鐘張正憲黃榮山呂家榮林致廷劉舜維
口試日期:2012-07-23
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:77
中文關鍵詞:微濃縮裝置氣相層析系統微流體介電泳及多壁奈米碳管
外文關鍵詞:micro gas chromatogrammicrofluidicsmicropreconcentrator (μPCT)dielectrophoresis (DEP) and multi-wall carbon nanotube
相關次數:
  • 被引用被引用:0
  • 點閱點閱:356
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究透過簡易的微機電製程,僅須一道光罩即可完成高效率微型氣相萃取裝置 (Micropreconcentrator)製作,並整合於氣相層析 (Gas Chromatography) 系統,進行揮發性有機氣體 (Volatile organic compounds, VOCs) 之量測與分析。結合微流體操控技術及化學還原反應(多倫反應,Tollens’reaction),發展快速之金屬沉積及高精準度之圖形轉印 (Pattern transfer)技術,將用來製作具有高加熱面積之金屬微結構,做為微型氣相萃取裝置所需之加熱電極。本文中將此技術用來發展兩種不同形式之微型氣相萃取裝置,並完成其特性測試。
相較於利用傳統微機電製程進行金屬蒸鍍,例如:電子束蒸鍍及熱蒸鍍,本研究利用微流體操控及多倫反應所發展之金屬沉積技術,具有簡易及較快速的沉積速度,能沉積厚度約為200 微米之銀微結構作為微型氣相萃取裝置之加熱元件。第一種設計是透過微流體操控技術及化學還原反應,在晶片內部形成四道液體介面,完成四條加熱電極之沉積。並透過熱裂解(Pyrolysis)方式,將碳膜包覆於銀電極表面,作為吸附氣體樣本之材料,完成本微型氣相萃取裝置之製作。當輸入功率為5 W時,具有23℃/s 之加熱速度,到達熱脫附之溫度需23秒。實驗中以濃度為10 PPM之Acetone、Benzene、Toluene及Xylene做為待測樣本,脫附之氣體樣本將經過長度為17公尺之石英管柱進行分離,最後再經由火焰離子感測器偵測分離後氣體之訊號並加以分析。由所量測之層析圖中可計算出其半高寬皆小於6秒,證明具有良好的脫附效果。
第二種設計則是利用乾蝕刻,於晶片內部製作具有高深寬比之柱狀陣列,藉此提升晶片內部表面積。同樣利用化學反應將內部沉積一層銀薄膜做微加熱電極。當輸入功率為5 W時,具有60℃/s 之加熱速度,到達熱脫附之溫度需5秒。經實驗證實,可將半高寬縮小至4秒,有效提高氣相層析分析之準確率。
此金屬沉積技術所製作之垂直電極,也應用於介電泳晶片之開發並進行奈米碳管純化之測試。相較於傳統平面電極僅在微流道底部才具有較高效能,垂直電極能在流道內不同深度的情況下,提供更均勻之電場,透過拉曼光譜分析純化前後之ID/IG,證實垂直電極能提供較高之純化效能。


A simple micromachined process based on one photomask is developed for a novel micropreconcentrator (μPCT) used in a micro gas chromatograph (μGC). Unique thick silver heating microstructures with a high surface area for microheaters of μPCT are fabricated by combining the microfluidic technique and the Tollens’ reaction within a microchannel. In this study, two types of micropreconcentrator were developed and tested.
Silver deposition using this laminar flow patterning technique provides a higher deposition rate and easier microfabrication compared to conventional micromachined technologies for thick metal microstructures (> 200 μm). An amorphous and porous carbon film that functions as an adsorbent is grown conformally on microheaters inside the microchannel. The μPCT can be heated to >300℃ rapidly by applying a constant electrical power of ~5 W with a heating rate of 23℃/s. Four volatile organic compounds (VOCs), acetone, benzene, toluene, and xylene, are collected through the proposed novel μPCTs and separated successfully using a 17-m-long gas chromatography (GC) column. The peak widths at half height (PWHH) of the four compounds are relatively narrow (<6 s), and the minimum PWHH of 3.75 s is obtained for acetone. The preconcentration factors are >38 000 for benzene and toluene.
The second type of μPCT with high-aspect-ratio pillar array at the adsorption region was designed and fabricated. The silver thin film heater was formed by injecting Tollens’ solutions alternately. Numerous micropreconcentrators were arranged in series to complete the silver deposition for mass production. A heating rate of 60 ℃/s could be obtained with an applied power of 5W. The peak widths at half height (PWHH) of 2.76 s, 3.24 s, 2.88 s, and 3.48 s were examined for acetone, benzene, toluene, and xylene, respectively.
A high-throughput micro/nanoparticle separation device with 3D electrodes was manufactured using laminar flow patterning. The 3D electrodes were manufactured to provide dielectrophoresis (DEP) force. Only one photomask was required during the fabrication process without additional vacuum-based metal deposition processes. The optimal deposition condition was tested and two parallel 3D electrodes were successfully formed at the liquid–liquid interfaces. Multi-walled carbon nanotubes (MWCNTs) were purified using DEP force according to the electrical characteristics. Raman spectroscopy, ID/IG ratio, and current-voltage measurements were employed to compare the purification performance between 3D electrodes and planar electrodes. The ID/IG ratio of conducting MWCNTs could be reduced to 0.71. This indicates that 3D electrodes can provide greater purification.


致謝 i
中文摘要 ii
ABSTRACT iv
Index vi
List of figures viii
List of tables xii
1 Introduction 1
1.1 Background and motivation 1
1.2 Objectives 3
2 Micropreconcentrator employing a laminar flow patterned microheater (Type I) 5
2.1 Design 5
2.2 Fabrication process 6
2.2.1 Microchannel fabrication 6
2.2.2 Silver microheater deposition 7
2.2.3 Integrated carbonized adsorbent formation 8
2.3 Results and discussion 11
2.3.1 Characterization of laminar flow patterning 11
2.3.2 Heating efficiency 14
2.3.3 Test of organic vapor preconcentrations 15
2.3.4 Sampling performance of micropreconcentrator 16
3 Micropreconcentrator with high-aspect-ratio pillar array (Type II) 19
3.1 Design 19
3.2 Fabrication process 20
3.2.1 Microchannel Fabrication 20
3.2.2 Silver thin film heater deposition 20
3.2.3 Integrated adsorbent formation 21
3.3 Results and discussion 22
3.3.1 Heating efficiency 22
3.3.2 Sampling performance of micropreconcetrator 22
4 Efficient carbon nanotube separation on laminar flow patterned 3D electrodes in a dielectrophoretic microchannel 24
4.1 Design 26
4.2 Fabrication process 27
4.2.1. Microchannel fabrication 27
4.2.2. Silver electrode deposition 27
4.3 Results and discussion 28
4.3.1. Purification of MWCNT 28
4.3.2. Raman Spectra Analysis 29
4.3.3. I-V curves measurement 30
5 Conclusions and future works 31
5.1 Conclusions 31
5.2 Future works 33
References 34
Tables 40


[1]Kataoka H 1996 Derivatization reactions for the determination of amines by gas chromatography and their applications in environmental analysis J. Chromatogr. A 733 19-34
[2]Poli D, Carbognani P, Corradi M, Goldoni M, Acampa O, Balbi B, Bianchi L, Rusca M, and Mutti A 2005 Exhaled volatile organic compounds in patients with non-small cell lung cancer: cross sectional and nested short-term follow-up study Respir. Res. 6 71 1-10
[3]Phillips M, Gleeson K, Hughes J M B, Greenberg J, Cataneo R N, Baker L and Mcvay W P 1999 Volatile organic compounds in breath as markers of lung cancer: a cross-sectional study Lancet 353 9168 1930-1933
[4]Phillips M, Cataneo R N, Condos R, Erickson G A R, Greenberg J, Bombardi V L, Munawar M I and Tietje, O 2007 Volatile Biomarkers of Pulmonary Tuberculosis in the Breath Tuberculosis 87 44-52
[5]Hughes R C, Patel S V and Manginell R P 2000 A MEMS based hybrid preconcentrator/chemiresistor chemical sensor in Proceedings of the 198th Meeting of the Electrochemical Society October 22 - 27
[6]Agah M, Lambertus G R, Sacks R and Wise, K D 2006 High-speed MEMS based gas chromatography J. Microelectromech. Syst. 15 5 1371–1378
[7] Lu C-J, Steinecker W H , Tian W-C, Oborny M C, Nichols J M, Agah M, Potkay J A, Chan H K L, Driscoll J R, Sacks D, Wise K D, Pang S W and Zellers, E T 2005 First-generation hybrid MEMS gas chromatograph Lab Chip 5 10 1123–113
[8]Tian W-C, Pang S W, Lu C-J and Zellers E T 2003 Microfabricated preconcentrator-focuser for a microscale gas chromatograph J. Microelectromech. Syst. 12 3 264-272
[9]Tian W-C, Chan H K L, Lu C-J, Pang S W and Zellers E T 2005 Multi-stage microfabricated preconcentrator-focuser for microscale gas chromatography system J. Microelectromech. Syst. 14 498–507
[10] Lu C-J and Zellers E T 2001 A dual-adsorbent preconcentrator for a portable indoor-VOC microsensor system Anal. Chem. 73 14 2001 3449-3457
[11] Serrano G, Chang H and Zellers, E T 2009 A micro gas chromatograph for high-speed determinations of explosive vapors IEEE Transducers 21-25 June 2009 1654-1657
[12] Alfeeli B and Agah M 2009 MEMS-Based selective preconcentration of trace level breath analytes IEEE Sens. J. 9 9 1068-1075
[13]Davis C E, Ho C K, Hughes R C and Thomas M L 2005 Enhanced detection of m-xylene using a preconcentrator with a chemiresistor sensor Sensors Actuators B 104 2 207-216
[14]Ivanov P, Blanco F, Gracia I, Sabate N, Ruiz A, Vilanova X, Correig X, Fonseca L, Figueras E, Santander J and Cane C 2007 Improvement of the gas sensor response via silicon μ-preconcentrator Sensors Actuators B 127 288–294
[15]Pijolat C, Camara M, Courbat J, Viricelle J-P, Briand D and de Rooij N F 2007 Application of carbon nano-powders for a gas micro-preconcentrator Sensors Actuators B 127 179–185
[16]Roh S-C, Choi Y-M and Kim S-Y 2006 Sensitivity enhancement of a silicon micro-machined thermal flow sensor Sensors Actuators A 128 1–6
[17]Lee S M, Dyer D C and Gardner J W 2003 Design and optimization of a high-temperature silicon micro-hotplate for nanoporous palladium pellistors Microelectronics J. 34 115–126
[18]Briand D, Colin S, Gangadharaiah A, Vela E, Dubois P, Thiery L and de Rooij N F 2006 Micro-hotplates on polyimide for sensors and actuators Sensors Actuators A 132 317–324
[19]Choi N-J, Lee Y-S, Kwak J-H, Park J-S, Park K-B, Shin K-S, Park H-D, Kim J-C, Huh J-S and Lee D-D 2005 Chemical warfare agent sensor using MEMS structure and thick film fabrication method Sensors Actuators B 108 177–183
[20]Udrea F, Gardner J W, Setiadi D, Covington J A, Dogaru T, Lu C C and Milne W I 2001 Design and simulation of SOI CMOS micro-hotplate gas sensors Sensors Actuators B 78 180–190
[21]Becker T, Muhlberger S, Barunmuhl C B, Muller G, Meckes A and Benecke W 2000 Gas mixture analysis using silicon micro-reactor systems J. Microelectromech. Syst. 9 478–484
[22]Kwon O J, Hwang S-M, Ahn J-G and Kim J J 2006 Silicon-based miniaturized-reformer for portable fuel cell applications J. Power Sources 156 253–259
[23]Splinter A, Sturmann J, Bartels O and Benecke W 2002 Micro membrane reactor: a flow-through membrane for gas pre-combustion Sensors Actuators B 83 169–174
[24]Geng X, Yuan H, Oguz H N and Prosperetti A 2001 Bubble-based micropump for electrically conducting liquids J. Micromech. Microeng. 11 270–276
[25]Yin Z and Prosperetti A 2005 ‘Blinking bubble’ micropump with microfabricated heaters J. Micromech. Microeng. 15 9 1683–1691
[26]Martin M, Crain M, Walsh K, McGill R A, Houser E, Stepnowski J, Stepnowski S, Wu H-D and Ross S 2007 Microfabricated vapor preconcentrator for portable ion mobility spectroscopy Sensors Actuators B 126 447–454
[27]Yeom J, Field C R, Bae B, Masel R I and Shannon M A 2008 The design, fabrication and characterization of a silicon microheater for an integrated MEMS gas preconcentrator J. Micromech. Microeng. 18 12 125001
[28]Ruiz A, Gracia I, Sabate N, Ivanov P, Sanchez A, Duch M, Gerbole M, Moreno A and Cane C 2007 Membrane-suspended microgrid as a gas preconcentrator for chromatographic applications Sensors Actuators A 135 192–196
[29]Voiculescu I, McGill R A, Zaghloul M E, Mott D, Stepnowski J, Stepnowski S, Summers H, Nguyen V, Ross S, Walsh K and Martin M 2006 Micropreconcentrator for enhanced trace detection of explosives and chemical agents IEEE Sensors J. 6 1094–1104
[30]Alfeeli B, Jahromi M A Z and Agah, M 2009 Micro preconcentrator with seedless electroplated gold as self-heating adsorbent IEEE SENSORS Conference 2009 1947-1950 25-28 Oct. 2009
[31]Kenis P J A, Ismagilov R F and Whitesides G M 1999 Microfabrication inside capillaries using multiphase laminar flow patterning Science 285 5424 83-85
[32]Formanek F, Takeyasu N and Tanaka T 2006 Selective electroless plating to fabricate complex three-dimensional metallic micro/nanostructures Appl. Phys. Lett. 88 0830110 1-3
[33]Tian W-C, Wu T H, Lu C-J, Chen W R and Sheen H J 2012 A novel micropreconcentrator employing a laminar flow patterned heater for micro gas chromatography J. Micromech. Microeng. 22 065014
[34]Tian W-C, Weigold J W and Pang S W 2000 Comparison of Cl2 and F-based dry etching for high aspect ratio Si microstructures etched with an inductively coupled plasma source J. Vac. Sci. Technol. B 18 1890–1896
[35]Huang Y, Joo S, Duhon M, Heller M, Wallace B, and Xu X 2002 Dielectrophoretic cell separation and gene expression profiling on microelectronic chip arrays Anal. Chem. 74 3362–3371
[36]Markx G H and Pethig R 1995 Dielectrophoretic separation of cells: continuous separation Biotechnol. Bioeng. 45 227–343
[37]Shivashankar G V and Libchaber A 1997 Single DNA molecule grafting and manipulation using a combined atomic force microscope and an optical tweezers Appl. Phys. Lett. 71 3727–3729
[38]Namasivayam V, Larson R, Burke D T and Burns M A 2002 Electrostretching DNA molecules using polymer-enhancedmedia within microfabricated devices Anal. Chem. 74 3378–3385
[39]Krupke R, Hennrich F, Lohneysen H V, and Kappes M M 2003 Separation of Metallic from Semiconducting Single-Walled Carbon Nanotubes Science, 301 344-347
[40]Krupke R, Linden S, Rapp M, and Hennrich F 2006 Thin Films of Metallic Carbon Nanotubes Prepared by Dielectrophoresis Advanced Materials, 18 1468-1470
[41]Arnold M S, Stupp S I and Hersam M C 2005 Enrichment of Single-Walled Carbon Nanotubes by Diameter in Density Gradients Nano Letters, 5 (4) 713-718
[42]Wei C H, Wei T Y, Liang C H and Tai F C 2009 The separation of different conducting multi-walled carbon nanotubes by AC dielectrophoresis Diamond & Related Materials, 18 332-336
[43]Wei C H, Wei T Y, and Tai F C 2010 The characteristics of multi-walled carbon nanotubes by a two-step separation scheme via dielectrophoresis Diamond & Related Materials, 19 573-577


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top