跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2025/01/18 13:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張小龍
研究生(外文):Yotsapoom Pheanpanitporn
論文名稱:血清中苯妥英治療藥物與壓阻微懸臂樑晶片偵測之研究
論文名稱(外文):Phenytoin Detection in Serum for Therapeutic Drug Monitoring Using Piezoresistive Microcantilever Biosensor
指導教授:黃榮山
指導教授(外文):Long-Sun Huang
口試委員:陳俊杉江宏仁
口試日期:2012-07-17
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:129
中文關鍵詞:抗癲癇藥物苯妥英壓阻壓阻微懸臂梁胎牛血清熒光偏振免疫法治療檢測
外文關鍵詞:Antiepileptic drugPhenytoinPiezoresistiveMicrocantileverTDMFBS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:268
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
苯妥英為近來使用最廣泛的抗癲癇藥物之一,其可藉由降低大腦電訊號的傳遞,抑制大腦不正常活動,進而達到避免癲癇發作的效果。苯妥英的治療劑量範圍很小而難以控制,若治療劑量過高,可能會導致藥物中毒;若劑量太低,則無法產生藥效。因此,須將藥物控制在適當的濃度方能充分發揮治療效果。治療藥物監測是一個觀察血液中苯妥英濃度的重要方法。隨著微機電系統(Micro-electromechanical System,MEMS)技術的進步,可攜帶、靈敏且可靠的壓阻式微懸臂樑生物感測器已被發展出來,其整合微流道系統後,可作為一免螢光標定之檢測平台。
為了能夠在胎牛血清(Fetal Bovine Serum,FBS)這種複雜的體液環境中測量苯妥英的濃度,需先量測苯妥英抗體和藥物的等電點(Isoelectric point,pI),以確定使用的FBS 其pH值應調整的範圍,而根據測量結果選用pH值8.05的50%及100% FBS來檢測100μg/ml苯妥英。使用壓阻式懸臂樑生物感測器時須先固定自組裝單層膜(Self-assembly Monolayer,SAM)和苯妥英抗體,最後加入藥物進行量測。在本研究中,首先測量在去離子(Deionized Water)水環境中,壓阻式微懸臂樑對10μg/ml苯妥英之反應性,得到解離常數(Dissociation Constant,KD)為58 μg/ml。接著測量100μg/ml苯妥英在pH 8.5的50%和100% FBS之反應,結果分別為0.36和0.24 N/m。此外,壓阻懸臂樑生物感測器的實驗結果,與傳統之螢光偏振免疫法(Fluorescence Polarization Immunoassay,FPIA)具有很高的一致性。


Phenytoin is one of the most widely used antiepileptic drugs recently. Its function is to suppress the abnormal brain activity seen in seizure by diminishing electrical conductance. However, its therapeutic dosage range in a circulatory system is very narrow and hard to be controlled. Otherwise, adverse effects may occur if the treatment dosage is too high, or an ineffective treatment may happen if the dosage is too low. So, only appropriate dosage must be given to reach a sufficient remedy. Therapeutic drug monitoring (TDM) is a crucial method to observe the concentration of phenytoin in blood vessel. With advances in micro-electromechanical system technology, a portable, sensitive and reliable piezoresistive-based microcantilever biosensor is fabricated and integrated with a microfluidic system for a label-free fluorescence detection.
In order to measure phenytoin in fetal bovine serum (FBS) which is complex body fluid environment, the isoelectric points (pI) of phenytoin antibody and drug were measured to determine the window of pH value of FBS. As a result, the pH 8.05 of 50% and 100% FBS were selected to detect 100 μg/ml phenytoin. The piezoresistive microcantilever biosensor was utilized by first immobilizing a self-assembly monolayer (SAM) and followed by phenytoin antibody. Next, the biosensor was approved to detect phenytoin drug with 10 μg/ml limit of detection under deionized water environment. The dissociation constant (KD) was 58 μg/ml and the detection linear range was between 10 – 75 μg/ml. The concentration sensitivity was 2.94 х 10-6 (μg/ml)-1. Then, 100μg/ml phenytoin drug was also detected in the 50% and 100% FBS with adjusted pH8.05. Besides, the piezoresistive microcantilever biosensor showed an outstanding experimental agreement with a fluorescence polarization immunoassay (FPIA).


口試委員會審定書 #
Acknowledgement i
中文摘要 iii
ABSTRACT v
CONTENTS vii
LIST OF FIGURES xi
LIST OF TABLES xviii
Chapter 1 Introduction 1
1.1 Preface 1
1.2 Motivation 2
1.3 Literature Review 3
1.3.1 Epilepsy and Antiepileptic Drugs 3
1.3.2 Biochemical Detection by using Microcantilever Biosensor 8
1.4 Overview of the Thesis 13
Chapter 2 Biosensor Technology 15
2.1 A Response of Biological Immune System 16
2.1.1 Antigen 17
2.1.2 Antibody 18
2.1.3 A Binding affinity of antigen and antibody 19
2.2 A Fundamental Principle of Biosensor 21
2.3 Current Immunoassay Technology 23
2.3.1 Competitive Immunoassays 23
2.3.2 Immunometric Assays 24
2.3.2 Indirect Immunoassays 25
2.3.4 Fluorescence Polarization Immunoassays 25
2.3.5 A Label-free Immunoassay based upon Surface Plasmon Resonance 27
2.4 Microcantilever Biosensors 28
2.4.1 An Optical-based Microcantilever Sensor 29
2.4.2 A Piezoresistive-based Microcantilever Sensor 30
2.4.3 The Association Kinetics at Solid-Liquid Interface of Microcantilever 31
2.5 Isoelectric Point of Antibody and Antigen 35
Chapter 3 A Theoretical Analysis of Piezoresistive Microcantilever 39
3.1 A Property of Piezoresistive Material 39
3.1.1 Piezoresistor and Gauge Factor 40
3.1.2 Piezoresistive Response 42
3.1.3 Piezoresistive Theory 45
3.2 Polycrystalline Silicon 45
3.2.1 Electrical Properties 46
3.2.2 Mechanical Properties 47
3.2.3 Fabrication of Polysilicon 48
3.3 The Characteristics of Microcantilever 53
3.3.1 Spring Constant and Natural Frequency 53
3.3.2 A Stress Analysis of Microcantilever 55
3.4 Design Analysis of Piezoresistive Microcantilever 61
3.5 Noise in Piezoresistors 65
3.5.1 Virational Noise 65
3.5.2 Johnson Noise 65
3.5.3 Flicker Noise 66
3.5.4 Total Noise 67
Chapter 4 Design and Fabrication of Piezoresistive Microcantilever Biosensor 68
4.1 Position of Piezoresistive Layer 68
4.2 Design and Dimension of Piezoresistive Microcantilever 69
4.3 A Fabrication of Piezoresistive Microcantilever on Silicon Wafer 70
4.3.1 Thin-film Deposition of Si3N4 and SiO2 Layer 71
4.3.2 Polycrystalline Silicon Deposition and Patterning 73
4.3.3 Gold connecting Wire Depositon and Patterning 74
4.3.4 A Passivation Layer Depositon 75
4.3.5 Gold Pad Releasing 76
4.3.6 Etching Passivation Layer 77
4.3.7 Defining the Shape and Position of Microcantilever 77
4.3.8 Defining the Position of Backside Etching 78
4.3.9 Gold Sensing Layer Deposition 78
4.3.10 KOH Backside Etching 79
4.3.11 Wafer Dicing 82
4.4 Design and Fabrication of Microchannel Substrate 83
4.5 Design and Fabrication of PDMS Substrate 84
4.6 Design and Fabrication of PC Board 87
4.7 Microcantilever Biosensor Device Assembly 89
4.8 Calculation of Neutral Axis and Gauge Factor 90
4.8.1 Neutral Axis Computation 91
4.8.2 Gauge Factor Calculation 92
Chapter 5 Experimental Results and Discussions 95
5.1 Isoelectric Point of Phenytoin Antibody and Drug 95
5.1.1 Methodology 96
5.1.2 Result 96
5.1.2 Discussion 97
5.2 Phenytoin Detection by Piezoresistive Microcantilever Biosensor 98
5.2.1 Methodology 98
5.2.2 Results and Discussions 103
5.3 Phenytoin Detection by Fluorescence Polariztion Immunoassay (FPIA) 112
5.3.1 Methodology 112
5.3.2 Results and Discussions 113
Chapter 6 Conclusions and Future Work 117
5.1 Conclusions 117
5.2 Future Work 118
REFERENCES 119


[1]O. Lazcka, F. J. Del Campo, and F. X. Munoz, "Pathogen detection: a perspective of traditional methods and biosensors," Biosensors & Bioelectronics, vol. 22, pp. 1205-1217, Feb 15 2007.
[2]C. Yang, C. Xu, X. Wang, and X. Hu, "Quantum-dot-based biosensor for simultaneous detection of biomarker and therapeutic drug: first steps toward an assay for quantitative pharmacology," Analyst, vol. 137, pp. 1205-1209, Mar 7 2012.
[3]R. Thusu. (2010). Strong Growth Predicted for Biosensors Market. Available: http://www.sensorsmag.com/specialty-markets/medical/strong-growth-predicted-biosensors-market-7640.
[4]J. A. Cramer, S. Mintzer, J. Wheless, and R. H. Mattson, "Adverse effects of antiepileptic drugs: a brief overview of important issues," Expert Rev Neurother, vol. 10, pp. 885-891, Jun 2010.
[5]N. Jarernsiripornkul, P. Senacom, V. Uchaipichat, N. Chaipichit, and J. Krska, "Patient reporting of suspected adverse drug reactions to antiepileptic drugs: factors affecting attribution accuracy," Epilepsy Behav, vol. 24, pp. 102-106, May 2012.
[6]M. Bialer and H. S. White, "Key factors in the discovery and development of new antiepileptic drugs," Nat Rev Drug Discov, vol. 9, pp. 68-82, 2010.
[7]T. Tomson, M.-L. Dahl, and E. Kimland, "Therapeutic monitoring of antiepileptic drugs for epilepsy," in Cochrane Database of Systematic Reviews, John Wiley & Sons, Ltd, 2010.
[8]C. C. Kuo, R. S. Chen, L. Lu, and R. C. Chen, "Carbamazepine inhibition of neuronal Na+ currents: quantitative distinction from phenytoin and possible therapeutic implications," Mol Pharmacol, vol. 51, pp. 1077-1083, Jun 1997.
[9]M. A. Rogawski and W. Loscher, "The neurobiology of antiepileptic drugs," Nat Rev Neurosci, vol. 5, pp. 553-564, Jul 2004.
[10]M. J. Brodie and M. A. Dichter, "Antiepileptic Drugs," New England Journal of Medicine, vol. 334, pp. 168-175, 1996.
[11](2000, October 2000). Seizures: Accurate Diagnosis And Effective Treatment. http://www.ebmedicine.net/topics.php?paction=showTopicSeg&topic_id=112&seg_id=2196.
[12]E. Woo, Y. M. Chan, Y. L. Yu, Y. W. Chan, and C. Y. Huang, "If a well-stabilized epileptic patient has a subtherapeutic antiepileptic drug level, should the dose be increased? A randomized prospective study," Epilepsia, vol. 29, pp. 129-139, Mar-Apr 1988.
[13]D. J. Gannaway and G. E. Mawer, "Serum phenytoin concentration and clinical response in patients with epilepsy," Br J Clin Pharmacol, vol. 12, pp. 833-839, Dec 1981.
[14]Bromfield EB, Cavazos JE, and Sirven JI. (2006). An Introduction to Epilepsy [Internet].
[15]T. J. Putnam and H. H. Merritt, "Experimental determination of the anticonvulsant properties of some phenyl derivatives," Science, vol. 85, pp. 525-526, Jan-Jun 1937.
[16]G. F. Ayala and D. Johnston, "The influences of phenytoin on the fundamental electrical properties of simple neural systems," Epilepsia, vol. 18, pp. 299-307, Sep 1977.
[17]H. Kutt, W. Winters, R. Kokenge, and F. McDowell, "Diphenylhydantoin Metabolism, Blood Levels, and Toxicity," Arch Neurol, vol. 11, pp. 642-648, Dec 1964.
[18]L. Lund, "Anticonvulsant Effect of Diphenylhydantoin Relative to Plasma-Levels - Prospective 3-Year Study in Ambulant Patients with Generalized Epileptic Seizures," Arch Neurol, vol. 31, pp. 289-294, 1974.
[19]E. A. De Leacy, C. D. McLeay, M. J. Eadie, and J. H. Tyrer, "Effects of subjects'' sex, and intake of tobacco, alcohol and oral contraceptives on plasma phenytoin levels," Br J Clin Pharmacol, vol. 8, pp. 33-36, Jul 1979.
[20]W. J. Spruill, W. E. Wade, H. H. Cobb, 3rd, and S. Akbari, "Three Michaelis-Menten pharmacokinetic dosing methods compared with physician dosing of phenytoin in an outpatient neurology practice," Pharmacotherapy, vol. 21, pp. 1407-1414, Nov 2001.
[21]M. Burt, D. C. Anderson, J. Kloss, and F. S. Apple, "Evidence-based implementation of free phenytoin therapeutic drug monitoring," Clin Chem, vol. 46, pp. 1132-1135, Aug 2000.
[22]S. Hara, J. Hagiwara, M. Fukuzawa, N. Ono, and T. Kuroda, "Determination of phenytoin and its major metabolites in human serum by high-performance liquid chromatography with fluorescence detection," Analytical Sciences, vol. 15, pp. 371-375, Apr 1999.
[23]A. Boisen, J. Thaysen, H. Jensenius, and O. Hansen, "Environmental sensors based on micromachined cantilevers with integrated read-out," Ultramicroscopy, vol. 82, pp. 11-16, Feb 2000.
[24]J. Liu and X. X. Li, "A piezoresistive microcantilever magnetic-field sensor with on-chip self-calibration function integrated," Microelectronics Journal, vol. 38, pp. 210-215, Feb 2007.
[25]M. Zimmermann, T. Volden, K. U. Kirstein, S. Hafizovic, J. Lichtenberg, O. Brand, and A. Hierlemann, "A CMOS-based integrated-system architecture for a static cantilever array," Sensors and Actuators B-Chemical, vol. 131, pp. 254-264, Apr 14 2008.
[26]J. Tamayo, A. D. L. Humphris, A. M. Malloy, and M. J. Miles, "Chemical sensors and biosensors in liquid environment based on microcantilevers with amplified quality factor," Ultramicroscopy, vol. 86, pp. 167-173, 2001.
[27]R. Berger, E. Delamarche, H. P. Lang, C. Gerber, J. K. Gimzewski, E. Meyer, and H. J. Guntherodt, "Surface stress in the self-assembly of alkanethiols on gold," Science, vol. 276, pp. 2021-2024, Jun 27 1997.
[28]J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H. J. Guntherodt, C. Gerber, and J. K. Gimzewski, "Translating biomolecular recognition into nanomechanics," Science, vol. 288, pp. 316-318, Apr 14 2000.
[29]K. W. Wee, G. Y. Kang, J. Park, J. Y. Kang, D. S. Yoon, J. H. Park, and T. S. Kim, "Novel electrical detection of label-free disease marker proteins using piezoresistive self-sensing micro-cantilevers," Biosens Bioelectron, vol. 20, pp. 1932-1938, Apr 15 2005.
[30]T. P. Burg, M. Godin, S. M. Knudsen, W. Shen, G. Carlson, J. S. Foster, K. Babcock, and S. R. Manalis, "Weighing of biomolecules, single cells and single nanoparticles in fluid," Nature, vol. 446, pp. 1066-1069, Apr 26 2007.
[31]J. W. Ndieyira, M. Watari, A. D. Barrera, D. Zhou, M. Vogtli, M. Batchelor, M. A. Cooper, T. Strunz, M. A. Horton, C. Abell, T. Rayment, G. Aeppli, and R. A. Mckendry, "Nanomechanical detection of antibiotic mucopeptide binding in a model for superbug drug resistance," Nature Nanotechnology, vol. 3, pp. 691-696, Nov 2008.
[32]S. P. Mohanty and E. Kougianos, "Biosensors: a tutorial review," Potentials, IEEE, vol. 25, pp. 35-40, 2006.
[33]Evolution of Immunity. http://nfs.unipv.it/nfs/minf/dispense/immunology/lectures/files/evolution_immunity.html
[34]http://www.cartage.org.lb
[35]http://www.calhoun.cc.al.us/
[36]http://en.wikipedia.org/wiki/Antibody
[37]S. M. Lin, "Handout of Applied Biochemistry class: Protein-protein interaction kinetics on the sensing chip," 2008.
[38]S. M. Lin, "Handout of Applied Biochemistry class: Protein-based Film in a Chip Technology," 2008.
[39]Y. K. Yen, "A Study on an Integrated Miniature Piezoresistive Microcantilever Biosensor and its Applications," Ph.D. dissertation, Graduate Institute of Applied Mechanics, College of Engineering, National Taiwan University, Taipei City, R.O.C., 2009.
[40]http://www.enzolifesciences.com/support/immunoassay-kits/immunoassay-
basics/.
[41]http://www.caymanchem.com/app/template/fpia,Introduction.vm;jsessionid
=EEAEFB409423347FDE326280AABDD091.
[42]http://www.mse.nthu.edu.tw/~tjyen/surface%20plasma.htm.
[43]K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl, and J. H. Hafner, "A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods," Acs Nano, vol. 2, pp. 687-692, Apr 2008.
[44]M. Tortonese, R. C. Barrett, and C. F. Quate, "Atomic Resolution with an Atomic Force Microscope Using Piezoresistive Detection," Applied Physics Letters, vol. 62, pp. 834-836, Feb 22 1993.
[45]N. V. Lavrik, M. J. Sepaniak, and P. G. Datskos, "Cantilever transducers as a platform for chemical and biological sensors," Rev. Sci. Instrum., vol. 75, pp. 2229-2253, Jul 2004.
[46]H. P. Lang, M. Hegner, and C. Gerber, "Cantilever array sensors," Materials Today, vol. 8, pp. 30-36, 2005.
[47]J. Thaysen, A. Boisen, O. Hansen, and S. Bouwstra, "Atomic force microscopy probe with piezoresistive read-out and a highly symmetrical Wheatstone bridge arrangement," Sensors and Actuators a-Physical, vol. 83, pp. 47-53, May 22 2000.
[48]R. W. Glaser, "Antigen-antibody binding and mass transport by convection and diffusion to a surface: a two-dimensional computer model of binding and dissociation kinetics," Analytical Biochemistry, vol. 213, pp. 152-161, Aug 15 1993.
[49]E. Stenberg, B. Persson, H. Roos, and C. Urbaniczky, "Quantitative determination of surface concentration of protein with surface plasmon resonance using radiolabeled proteins," Journal of Colloid and Interface Science, vol. 143, pp. 513-526, 1991.
[50]A. L. Lehninger, D. L. Nelson, and M. M. Cox, Lehninger Principles of Biochemistry: W.H. Freeman, 2005.
[51]H. Schagger, "Tricine-SDS-PAGE," Nat Protoc, vol. 1, pp. 16-22, 2006.
[52]A. Vertommen, B. Panis, R. Swennen, and S. C. Carpentier, "Challenges and solutions for the identification of membrane proteins in non-model plants," J Proteomics, vol. 74, pp. 1165-1181, Aug 12 2011.
[53]http://en.wikipedia.org/wiki/File:SDS-PAGE_Electrophoresis.png.
[54]W. Thomson, "On the Electro-dynamic Qualities of Metals: Effects of Magnetization on the Electric Conductivity of Nickel and of Iron," Proceedings of the Royal Society of London, vol. 8, pp. 546-550, 1857.
[55]C. S. Smith, "Piezoresistance Effect in Germanium and Silicon," Physical Review, vol. 94, pp. 42-49, 1954.
[56]A. A. Barlian, W. T. Park, J. R. Mallon, A. J. Rastegar, and B. L. Pruitt, "Review: Semiconductor Piezoresistance for Microsystems," Proceedings of the Ieee, vol. 97, pp. 513-552, Mar 2009.
[57]L. Y. Lin, "Detection of Anti-epileotic Drug Phenytoin by Piezoresistive Microcantilever Biosensor," M.S. Thesis, Graduate Institute of Applied Mechanics, College of Engineering, National Taiwan University, Taipei City, R.O.C., 2011.
[58]Y. Kanda, "A graphical representation of the piezoresistance coefficients in silicon," Electron Devices, IEEE Transactions on, vol. 29, pp. 64-70, 1982.
[59]P. J. French, "Polysilicon: a versatile material for microsystems," Sensors and Actuators a-Physical, vol. 99, pp. 3-12, Apr 30 2002.
[60]R. T. Howe, B. E. Boser, and A. P. Pisano, "Polysilicon integrated microsystems: Technologies and applications," Sensors and Actuators a-Physical, vol. 56, pp. 167-177, Aug 1996.
[61]R. S. Hijab and R. S. Muller, "Residual strain effects on large aspect ratio micro-diaphragms [capacitance transducer]," in Micro Electro Mechanical Systems, 1989, Proceedings, An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots. IEEE, 1989, pp. 133-138.
[62]X. W. Liu, Y. J. Wu, R. Y. Chuai, C. Z. Shi, W. P. Chen, and J. F. Li, "Temperature Characteristics of Polysilicon Piezoresistive Nanofilm Depending on Film Structure," 2008 2nd Ieee International Nanoelectronics Conference, Vols 1-3, pp. 909-913, 2008.
[63]P. J. French and A. G. R. Evans, "Piezoresistance in Polysilicon and Its Applications to Strain-Gauges," Solid-State Electronics, vol. 32, pp. 1-10, Jan 1989.
[64]D. Sarid, Scanning Force Microscopy: With Applications to Electric, Magnetic, and Atomic Forces: Oxford University Press, 1994.
[65]C. Ziegler, "Cantilever-based biosensors," Anal Bioanal Chem, vol. 379, pp. 946-59, Aug 2004.
[66]Y. F. Ku, "The Elimination of Temperature Effects on a Piezoresistive Microcantilever Biosensor," Master''s, Graduate Institute of Applied Mechanics, College of Engineering, National Taiwan University, 2009.
[67]F. T. Goericke, "Simulation, fabrication and characterization of piezoresistive bio-/chemical sensing microcantilevers," M.S. thesis, Georgia Institute of Technology, Atlanta, Ga, USA, 2007.
[68]M. Joshi, P. S. Gandhi, R. Lal, V. R. Rao, and S. Mukherji, "Modeling, Simulation, and Design Guidelines for Piezoresistive Affinity Cantilevers," Journal of Microelectromechanical Systems, vol. 20, pp. 774-784, Jun 2011.
[69]P. L. P. Hoa, G. Suchaneck, and G. Gerlach, "Influence of polycrystalline silicon as electrical shield on reliability and stability of piezoresistive sensors," Sensors and Actuators a-Physical, vol. 120, pp. 567-572, May 17 2005.
[70]H. Nyquist, "Thermal agitation of electric charge in conductors," Physical Review, vol. 32, pp. 110-113, Jul 1928.
[71]F. N. Hooge, "1/F Noise Is No Surface Effect," Physics Letters A, vol. A 29, pp. 139-140, 1969.
[72]R. F. Voss and J. Clarke, "Flicker (1-F) Noise - Equilibrium Temperature and Resistance Fluctuations," Physical Review B, vol. 13, pp. 556-573, 1976.
[73]F. N. Hooge and L. K. J. Vandamme, "Lattice Scattering Causes 1-F Noise," Physics Letters A, vol. 66, pp. 315-316, 1978.
[74]R. M. Panas, M. A. Cullinan, and M. L. Culpepper, "Design of piezoresistive-based MEMS sensor systems for precision microsystems," Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology, vol. 36, pp. 44-54, Jan 2012.
[75]J. A. Harley and T. W. Kenny, "1/F noise considerations for the design and process optimization of piezoresistive cantilevers," Journal of Microelectromechanical Systems, vol. 9, pp. 226-235, Jun 2000.
[76]J. Thaysen, "Cantilever for Bio-Chemical Sensing Integrated in a Microliquid Handling System," Ph.D. dissertation, Mikroelektronik Centret, MIC, Technical University of Denmark (DTU), Lyngby, Copenhagen, Denmark, 2002.
[77]S. Sukuabol, D. K. Sood, and G. Rosengarten, "Geometric Optimisation of SU-8 Piezoresistive Cantilever Sensors for Biochemical Applications," in Intelligent Sensors, Sensor Networks and Information Processing Conference, 2005. Proceedings of the 2005 International Conference on, 2005, pp. 247-252.
[78]C.-W. Baek, Y.-K. Kim, Y. Ahn, and Y.-H. Kim, "Measurement of the mechanical properties of electroplated gold thin films using micromachined beam structures," Sensors and Actuators A: Physical, vol. 117, pp. 17-27, 2005.
[79]A. Stoffel, A. Kovacs, W. Kronast, and B. Muller, "LPCVD against PECVD for micromechanical applications," Journal of Micromechanics and Microengineering, vol. 6, pp. 1-13, 1996.
[80]W. N. Sharpe, Jr., Y. Bin, R. Vaidyanathan, and R. L. Edwards, "Measurements of Young''s modulus, Poisson''s ratio, and tensile strength of polysilicon," in Micro Electro Mechanical Systems, 1997. MEMS ''97, Proceedings, IEEE., Tenth Annual International Workshop on, 1997, pp. 424-429.
[81]J.-H. Zhao, T. Ryan, P. S. Ho, A. J. McKerrow, and W.-Y. Shih, "Measurement of elastic modulus, Poisson ratio, and coefficient of thermal expansion of on-wafer submicron films," Journal of Applied Physics, vol. 85, pp. 6421-6424, 1999.
[82]T. Y. Zhang, Y. J. Su, C. F. Qian, M. H. Zhao, and L. Q. Chen, "Microbridge testing of silicon nitride thin films deposited on silicon wafers," Acta Materialia, vol. 48, pp. 2843-2857, 2000.
[83]Shipley, MicropositR S1800R Series Photoresists.
[84]A. E. Materials, "AZ P4620 Photoresist Date Package.
[85]http://www.cleanroom.byu.edu/KOH.phtml
[86]Y. N. Xia and G. M. Whitesides, "Soft lithography," Annual Review of Materials Science, vol. 28, pp. 153-184, 1998.
[87]A. Pimpin and W. Srituravanich, "Review on Micro- and Nanolithography Techniques and Their Applications," Engineering Journal, vol. 16, pp. 38-55, 2011.
[88]J. N. Adkins, S. M. Varnum, K. J. Auberry, R. J. Moore, N. H. Angell, R. D. Smith, D. L. Springer, and J. G. Pounds, "Toward a human blood serum proteome - Analysis by multidimensional separation coupled with mass spectrometry," Molecular & Cellular Proteomics, vol. 1, pp. 947-955, Dec 2002.
[89]Z. C. Pei, H. Anderson, A. Myrskog, G. Duner, B. Ingemarsson, and T. Aastrup, "Optimizing immobilization on two-dimensional carboxyl surface: pH dependence of antibody orientation and antigen binding capacity," Analytical Biochemistry, vol. 398, pp. 161-168, Mar 15 2010.
[90]http://www.druglib.com/activeingredient/phenytoin/chembio/
[91]http://www.drugbank.ca/drugs/DB00252
[92]http://www.funakoshi.co.jp/data/datasheet/PCC/24510.pdf
[93]http://www.ktgh.com.tw/Medicament_tbDrug_Look.asp?CatID=124&Module
Type=Y&NewsID=559&Ordid=30062
[94]D. S. Smith and S. A. Eremin, "Fluorescence polarization immunoassays and related methods for simple, high-throughput screening of small molecules," Anal Bioanal Chem, vol. 391, pp. 1499-1507, Jul 2008.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top