(100.26.176.182) 您好!臺灣時間:2019/12/12 19:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:廖宜鼎
研究生(外文):Yi-Ding Liao
論文名稱:醫用面(口)罩過濾效率檢驗方法之評估
論文名稱(外文):Evaluation of Filtration Efficiency Test Method of Surgical Mask
指導教授:陳志傑陳志傑引用關係
指導教授(外文):Chih-Chieh Chen
口試委員:鄭福田賴全裕張靜文蕭大智
口試日期:2012-07-30
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:職業醫學與工業衛生研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:70
中文關鍵詞:醫用口罩次微米微粒過濾效率細菌過濾效率
外文關鍵詞:Surgical maskParticulate filtration efficiencyBacterial filtration efficiency
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1028
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
日前國內醫用面(口)罩,經衛生署公告自96年7月14日起均須符合國家標準CNS 14774之性能規格要求,該標準中對於口罩濾材的過濾效率方面,規定必須同時符合細菌過濾效率(bacteria filtration efficiency, BFE)測試以及次微米微粒過濾效率(particulate filtration efficiency, PFE)測試等二種方法的性能要求(經濟部標準檢驗局 2003)。由於在進行BFE測試方法時所耗費之時間及耗材都較PFE測試方法來的高,且也有造成生物危害之風險。相對地,PFE測試方法相對容易操作,且可以較快得知測試結果。雖然BFE與PFE的測試條件並不相同,可能使得口罩測試結果有所差異。但從穿透率的觀點來看,對於同一濾材而言,BFE與PFE的測試結果應該會有相當程度的相關性。故本研究目標為建置PFE、BFE方法與評估確認各項變異之來源,建立PFE與BFE的相關性,並利用實驗方法比較BFE與PFE之差異,評估以PFE取代BFE的可能性,其優點為增加醫用口罩性能測試的可靠度,同時降低耗材成本以及時間上的需求。
為了解不同之醫用口罩在BFE與PFE試驗中之差異,本實驗自市面上選取W、H、M三牌款口罩為樣本進行其穿透率曲線之測試。實驗中選取W、H、M牌三款口罩,每款各取15片,共45片口罩為一組進行測試,一共測試兩組口罩,將兩組口罩分別送至美國Nelson實驗室以及財團法人紡織產業綜合研究所,要求以等同CNS 14755之實驗方法的條件進行測試,最後將雙方結果進行比較。另外,本實驗針對影響氣霧產生之相關參數,以相當於單一金黃葡萄球菌粒徑的壓克力粉末模擬BFE試驗氣霧之產生以探討其產生特性。
目前成果發現影響微粒粒徑分布的主要貢獻因子為用於稀釋細菌懸浮液之蛋白腖溶液,蛋白腖溶液濃度越高,所產生的微粒粒徑越大,質量數目濃度也越高。除了蛋白腖溶液之外,產生器供給之高壓空氣流率及溶液供給速率也會影響產生微粒之特性。實驗中模擬細菌懸浮液之壓克力粉末濃度介於104~106 #/cm3,根據結果得知並未對所產生的微粒粒數濃度粒徑分布造成顯著影響,因此推測在BFE實驗時可藉由改變細菌懸浮液濃度改變採集到之菌落數,而不致影響其粒徑分布。此外,結果也顯示改變測試腔中濕度或是否對產生之微粒進行電性中和以及使用不同廠牌之蛋白腖都未顯著影響霧化器產生微粒之特性。
本實驗結果顯示當量測之微粒粒徑範圍與分布情形不同時,微粒的分布情形會對口罩穿透率測試結果造成影響。當挑戰氣膠微粒之CMD落在 3 ± 0.3 μm時,當CMD越小、GSD越大,對於相同濾材來說,其總微粒穿透率也會隨之增加。而穿透率越高的口罩越容易受到挑戰氣膠分布的影響,反之,只要口罩的穿透率夠低,挑戰氣膠分布的影響則可以忽略。當進行BFE測試方法量測同一款口罩之穿透率時,其穿透率結果會較PFE測試方法有較大之變異,將使得BFE之測試結果在各實驗室間之再現性較PFE之方法要低。

Surgical masks need to pass bacterial efficiency (BFE) tests equivalent to ASTM F2100 as required by USFDA, to be certified for medical use in many countries. Yet, surgical mask filter efficiency has been found extremely variable in several previous studies. The inconsistency results among certified laboratories during the inter-laboratory comparison tests were particularly troublesome to the regulatory agencies. Therefore, this work aimed to identify the source of the variability of BFE test method and to propose a replacement method that is more consistent and directly associated with the respiratory protection.

Experimental apparatus was build according to the ASTM F2100. Acrylic powder of 0.8μm was used as the surrogate of Staphylococcus aureus during the beginning phase of the project. Aerosol particles were nebulized into chamber and sampled with an Andersen cascade impactor sampler onto 6 stages at 28.3 L/min. The size distribution and number concentration of the aerosol output were measured using an aerodynamic particle sizer. The filtration efficiency of the surgical masks to be tested by ASTM method, was measured using a scanning mobility particle sizer (for particle smaller than 0.7 μm) and an aerodynamic particle sizer (for particles larger than 0.7 μm). The major operating parameters included concentration of the peptone solution, brand of peptone, number concentration of particle in the solution, solution feeding rate, and air flow supplied to the generator. In addition to the in-house laboratory experiments, two certified laboratories (Nelson laboratory in the United States and Taiwan Textile Research Institute, TTRI laboratory) were chosen to carry out the inter-laboratory comparison. Three models of already certified surgical masks with the lowest filtration efficiency were selected to facilitate the statistical analysis of bacterial colony count. The particulate filtration efficiency and the pressure drop across the filter media were measured by using a filter tester (TSI 8130) before sending to certified laboratories. For each model, 15 facepieces were sent to a laboratory for pressure drop, BFE and PFE tests.
The results showed that aerosol number concentration increased with the increasing air flow supplied to the generator. This is because higher air flow (or pressure) tended to break solution into smaller droplets. But the peptone concentration and the solution feeding rate appeared to be the two most influential factors determining the size distribution of the generated droplets. The bacteria (or the acrylic powder) concentration in the solution did not affect the aerosol size distribution, but might change the colony count of BFE test. From the inter-laboratory comparison, the particulate filtration efficiency tests were consistent in terms of pressure drop across the filter media and the aerosol filtration efficiency. However, the bacterial filtration efficiency test results were random and even contradictive. This is likely due to the propagation of the uncertainties embedded in the biological processes of BFE method. Overall, the Bacterial efficiency tests method is inconsistent, tedious, costly and unnecessary. We propose that surgical masks be tested using non-biological particles with the most penetrating size, i.e., 0.3 μm for mechanical filters, and 0.075 μm for electret fitlers.

致謝 I
摘要 II
Abstract IV
目錄 VI
表目錄 IX
圖目錄 X
附件目錄 XII

第一章、 前言.................................................................................... 1
1.1 醫用口罩的源起與檢測方法的建立................................ 1
1.2 研究動機與目的................................................................ 2
第二章、 文獻資料蒐集分析............................................................ 4
2.1 環境中氣膠微粒與影響口罩過濾效率因子.................... 4
2.2 口罩之過濾機制與微粒粒徑............................................ 4
2.3 國際間針對醫用面(口)罩管理之相關法規..................... 5
2.3.1 美國.................................................................................... 5
2.3.2 歐盟.................................................................................... 6
2.3.3 中國大陸............................................................................ 6
2.3.4 台灣.................................................................................... 7
2.4 國內、外口罩產品相關檢測實驗室資料.......................... 8
2.5 細菌過濾效率(bacteria filtration efficiency, BFE)測試實驗....................................................................................
9
2.5.1 實驗方法整理.................................................................... 9
2.5.2 細菌過濾效率試驗步驟.................................................... 9
2.5.3 金黃色葡萄球菌之生物特徵............................................ 10
2.6 次微米微粒過濾效率(particulate filtration efficiency, PFE).................................................................................
11
第三章、 研究材料與方法................................................................ 12
3.1 實驗系統架設.................................................................... 12
3.1.1 口罩穿透率測試系統........................................................ 12
3.1.2 細菌防護效率實驗系統.................................................... 12
3.1.3 次微米微粒防護效率測試系統........................................ 13
3.2 實驗材料............................................................................ 13
3.2.1 蛋白腖水溶液 (Peptone water, PEPW) ........................... 13
3.2.2 測試菌液之製備................................................................ 13
3.2.3 霧化器................................................................................ 13
3.2.4 安德森六階式生物氣膠採樣器 (Six Stage Viable, Andersen Cascade Impactor) ............................................
14
3.2.5 氣動微粒分徑器(Aerodynamic Particle Sizer, APS)....... 14
3.3 參數表................................................................................ 14
第四章、 結果與討論........................................................................ 15
4.1 我國與國際間醫用面(口)罩過濾效能檢測標準與市場管理之分析與比較............................................................
15
4.2 BFE模擬實驗之結果探討................................................ 15
4.2.1 不同溶液特性之影響........................................................ 15
4.2.2 溶液中不同壓克力粉末濃度之影響................................ 16
4.2.3 供給霧化器之高壓空氣流量對產生微粒粒徑分布的影響評估................................................................................
16
4.2.4 溶液供給速率之影響........................................................ 17
4.2.5 不同品牌蛋白腖之影響.................................................... 17
4.2.6 蛋白腖水溶液濃度之影響................................................ 17
4.2.7 測試腔中濕度改變之影響................................................ 18
4.2.8 電性中和微粒對微粒產生分布之影響............................ 18
4.2.9 改變測試腔管徑長度對產生微粒分布的影響................ 18
4.2.10 加裝口罩握持器對微粒分布的影養................................ 18
4.2.11 蛋白腖不同滅菌時間對微粒分布的影響........................ 18
4.2.12 BFE實驗操作時,總微粒與生物性微粒數目之比較...... 18
4.2.13 口罩穿透率測試實驗........................................................ 19
4.2.14 不同CMD之挑戰氣膠分布穿透濾材前後之比較.......... 19
4.2.15 不同GSD之挑戰氣膠分布穿透濾材前後之比較........... 19
4.2.16 不同挑戰氣膠的GSD與CMD對微粒穿透率之影響..... 20
4.3 Nelson與紡研所之實驗室測試PFE與BFE結果比較.... 20
第五章、 結論與建議........................................................................ 22
第六章、 參考文獻............................................................................ 24
附件 70







表 目 錄
表1. 國內、外可進行口罩測試之實驗室......................................... 27
表2. 參數表....................................................................................... 28
表3. 各國醫用面罩測試驗證標準之比較....................................... 29
表4. BFE與 PFE穿透率之變異比較............................................. 30
表5. 送測三款口罩壓降之變異比較............................................... 31










圖目錄
圖1. 環境中常見物質之粒徑分佈................................................... 32
圖2. 濾材過濾效率與五種過濾機制............................................... 33
圖3. 濾材靜電效應與濾材最易穿透粒徑相關性………………... 34
圖4. BFE實驗系統圖……………………………………………... 35
圖5. 溶液供給速率與霧化器產生量之關係圖…………………... 36
圖6. 微粒穿透率測試系統圖........................................................... 37
圖7. BFE與模擬實驗之系統圖....................................................... 38
圖8. 霧化器結構圖........................................................................... 39
圖9. 本實驗使用之霧化器特性 – 流量與壓力關係圖……..…... 40
圖10. Dilutor 結構圖......................................................................... 41
圖11. 不同溶液加入壓克力粉末對產生微粒粒徑分布的影響…... 42
圖12. 不同壓克力粉末濃度對產生微粒粒徑分布的影響………... 43
圖13. 產生之微粒於電子顯微鏡下之照片…………………….….. 44
圖14. 供給產生器不同流量之高壓空氣對產生微粒分布的影響... 45
圖15. 不同溶液供給速率對產生微粒分布的影響………………... 46
圖16. 不同品牌之蛋白腖對產生微粒分布之影響………………... 47
圖17. 不同濃度之 BD牌蛋白腖水溶液產生之微粒分布………... 48
圖18. 不同濕度的影響……………………………………………... 49
圖19. 電性中和對產生微粒分布的影響…………………………... 50
圖20. 改變測試腔管徑長度對產生微粒分布的影響……………... 51
圖21. 加裝口罩握持器對微粒分布的影響………………………... 52
圖22. 蛋白腖不同滅菌時間對微粒分布的影響…………………... 53
圖23. BFE實驗操作時,總微粒與生物性微粒數目之比較………. 54
圖24. H、M、W三款口罩穿透率試驗結果………………………. 55
圖25. 不同CMD之挑戰氣膠分布穿透濾材前後之比較…………. 56
圖26. 不同GSD之挑戰氣膠分布穿透濾材前後之比較………….. 57
圖27. 不同挑戰氣膠的GSD與CMD對微粒穿透率之影響……… 58
圖28. PFE與BFE之關係圖 – 以Nelson 與TTRI 測試之口罩為例……………………………………………………………...
59
圖29. 各口罩之穿透率與壓降之關係圖………………………....... 60


附件目錄
附件1. 中國大陸《醫療器械說明書、標籤和包裝標識管理規定》(局令第10號)說明書審查要點...........................................
61
附件2. 關於進一步加強醫療器械不良事件監測有關事宜的公告...............................................................................................
63
附件3. 安德森採樣器之 Positive-hole correction table………......... 64
附件4. H牌口罩之測試結果............................................................... 65
附件5. H牌口罩以TSI 8130測試之穿透率及壓降圖……….…… 66
附件6. M牌口罩之測試結果.............................................................. 67
附件7. M牌口罩以TSI 8130測試之穿透率及壓降圖.………......... 68
附件8. W牌口罩之測試結果 ............................................................ 69
附件9. W牌口罩以TSI 8130測試之穿透率及壓降圖.………......... 70


Andersen, A. A. (1958). New sampler for the collection, sizing, and enumeration of viable airborne particles. Journal of bacteriology 76:471-484.
ASTM (2007). Standard test method for evaluating the bacterial filtration efficiency (BFE) of medical face mask materials, using a biological aerosol of Staphylococcus aureus., ASTM.
Belkin, N. L. (1997). The evolution of the surgical mask: filtering efficiency versus effectiveness. Infection Control and Hospital Epidemiology 18:49-57.
Belkin, N. L. (2009). The surgical mask: Are new tests relevant for or practice. AORN 89:883-891.
Capps, J. A. (1918). A new adaptation of the face mask in control of contagious disease. JAMA: The Journal of the American Medical Association 70:910-911.
Chen, C.-C. and Huang, S.-H. (1998). The effects of particle charge on the performance of a filtering facepiece. American Industrial Hygiene Association Journal 59:227-233.
Chen, S.-K., Vesley D., Brosseau L. M. and Vincent J. H.(1994). Evaluation of single-use masks and respirators for protection of health care workers against mycobacterial aerosols. American Journal of Infection Control 22:65-74.
Chen, C.-C. and Willeke, K. (1992). Aerosol penetration through surgical masks. American Journal of Infection Control 20:177-184.
FDA, Guidance for industry and FDA staff: surgical masks—premarket notification [510(k)] Submissions. Food and Drug Administration, Washington, DC, 2004
Greene, V. W. and Vesley, D. (1962). Method for evaluating effectiveness of surgical masks. Journal of bacteriology 83:663-667.
Haller, D. A., Colwell, R.C. (1918). The protective qualities of the gauze face mask: Experimental studies. JAMA: The Journal of the American Medical Association 71:1213-1215.
Hinds, W. C. (1999). Aerosol technology: properties, behavior, and measurement of airborne particles. 2nd ed. pp. 6, New York
Huang, S.-H., Chen, C.-W., Chang, C.-P., Lai, C.-Y. and Chen, C.-C. (2007). Penetration of 4.5 nm to 10 m aerosol particles through fibrous filters. Journal of Aerosol Science 38:719-727.
Kellogg, W. H. and MacMillan, G. (1920). An experimental study of the efficacy of gauze face masks. American Journal of Public Health 10:34-42.
Kowalski, W. J. (2007). Hospital-acquired infections.
Lutz, E. A. (2010). Human and Animal Exposure to Airborne Methicillin-resistant Staphylococcus aureus (MRSA): Laboratory Evaluations and Veterinary Hospital Pilot Study, Graduate School of The Ohio State University.
NIOSH (1995). 42 CFR 84 Respiratory protective devices, in 60:110, US Centers for Disease Control and Preventionand Health, National Institute for Occupational Safety 30335-30398.
NIOSH (2005). Determination of particulate filter penetration to test against solid particulates for negative pressure, air-purifying respirators standard testing procedure, National personal protective technology laboratory, National Institute for Occupational Safety and Health.
Oberg, T. and Brosseau, L. M. (2008). Surgical mask filter and fit performance. American Journal of Infection Control 36:276-282.
Park, J.-M., Rock, J. C., Wang, L., Seo, Y.-C., Bhatnagar, A. and Kim, S. (2009). Performance evaluation of six different aerosol samplers in a particulate matter generation chamber. Atmospheric Environment 43:280-289.
Prescott, L. M., Harley, J. P. and Klein, D. A. (2005). Fundamentals of microbiology. McGraw-Hill, Inc., pp. 511-514.
Rockwood, J. C. A. and O''Donoghue, D. H. (1960). The Surgical Mask: Its Development, Usage, and Efficiency. Archives of Surgery 80:963-971.
Shafaa, M. W., Dayem, S. A., Elshemey, W. M. and Osman, H. M. (2008). In vitro antibacterial activity of liposomal cephalexin against staphylococcus aureus. Romanian Journal of Biophysics 18.
Tunevall, T. G. (1991). Postoperative wound infections and surgical face masks: A controlled study. World Journal of Surgery 15:383-387.
Vaughan, N. P. (1989). The Andersen impactor: Calibration, wall losses and numerical simulation. Journal of Aerosol Science 20:67-90.
Weaver, G. H. (1919). Droplet infection and its prevention by the face mask. The Journal of Infectious Diseases 24:218-230.
Weaver, G. H. (1918). The value of the face mask and other measures: In prevention of diphtheria, meningitis, pneumonia, etc. JAMA: The Journal of the American Medical Association 70:76-78.
Willeke, K., Qian, Y., Donnelly, J., Grinshpun, S. and Ulevicius, V. (1996). Penetration of airborne microorganisms through a surgical mask and a dust/mist respirator. American Industrial Hygiene Association Journal 57:348-355.
行政院國家科學委員會 (2004). 基因重組實驗守則, 行政院國家科學委員會.
林汝青, 古曉倩., 杜培文, 鄒玫君 (2009). 市售外科手術口罩之品質監測. 藥物食品檢驗局調查研究年報 27.
黃盛修, 陳春萬., 張振平, (2005). 市售特殊機能口罩效能探討. 勞工安全衛生研究季刊 13.
楊采菱 (2005). 政令宣導 全國微生物抗藥性監測計畫(Taiwan Surveillance of Antimicrobial Resistance; TSAR). 感染控制雜誌 15:313-318.
經濟部標準檢驗局 (2003a). 拋棄式防塵口罩 (CNS14755, Z2125).
經濟部標準檢驗局 (2003b). 醫用面罩, 經濟部標準鑑驗局.
經濟部標準檢驗局 (2003c). 醫用面罩材料細菌過濾效率試驗法─使用金黃葡萄球菌生霧氣膠 (CNS14775, T4037), 經濟部標準檢驗局.
賴全裕, 陳志傑 (2010). 呼吸防護具效能驗證制度規劃及輔導計畫, 勞委會安全衛生處.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔