(18.205.60.226) 您好!臺灣時間:2019/12/15 11:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:陳柏欽
研究生(外文):Po-Chin Chen
論文名稱:單一薄膜破裂氣膠逸散之特性探討
論文名稱(外文):Characterization of aerosol emission from the burst of a single film
指導教授:陳志傑陳志傑引用關係
指導教授(外文):Chih-Chieh Chen
口試委員:林文印蕭大智陳友剛鄭福田
口試日期:2012-07-16
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:職業醫學與工業衛生研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:45
中文關鍵詞:人體呼出微粒單一薄膜破裂溶液特性
外文關鍵詞:A single film burstingSolution propertyExhaled breathing aerosol
相關次數:
  • 被引用被引用:0
  • 點閱點閱:139
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
呼吸道疾病的傳染方是主要是藉由病人咳嗽或打噴嚏等微粒產生方式。近年來的研究指出,人體在平靜呼吸時可產生微粒,雖然其產生的機制和特性尚未確定,但是此微粒產生方式將造成呼吸道疾病在感染和控制策略上的重大改革。

為了模擬薄膜破裂機制和探討影響因子,建立單一薄膜產生系統。經HEPA過濾後的氣流連接到薄膜產生系統,可控制不同流量模擬不同的呼吸道風速;單一薄膜產生裝置,用來產生單一薄膜和使之破裂後產生微粒,此裝置可改變測試溶液的特性,探討溶液的表面張力和黏滯度對於微粒產生的影響,並可改變玻璃管管徑以模擬不同直徑的支氣管;監測系統,主要由凝結核微粒計數器(CPC)、氣動微粒分徑器(APS)和溫濕度計構成,APS和CPC量測因薄膜破裂而產生的微粒粒徑和總微粒數。

因薄膜破裂而產生之液滴粒徑和總微粒數會因為管道內的風速、管徑和溶液特性等參數的變異而改變。流速方面,則以3 cm/s為分界,分為高低風速區,總微粒數在不同風速區有不同趨勢;管徑的改變直接影響薄膜上溶液的體積,總微粒數因管徑變大而增加,換算成單位面積微粒產生量則在各管徑間無明顯差異;溶液的表面張力對於微粒的產生有顯著的影響,總微粒數因表面張力降低而增加,然而溶液的黏滯度對於產生量的影響並不顯著;利用加入0.9 %的食鹽水,增加模擬黏液的表面張力,能降低薄膜破裂微粒產生量,若實際運用於人體末端細小支氣管黏液,則需考慮食鹽水的霧滴粒徑和人體肺部沉積效應,表示若要改變人體末端支氣管黏液的表面張力,需長時間且大量的吸入0.9 %食鹽水液滴,造成實際執行上的困難和限制。


目錄
致謝 I
摘要 II
Abstract III
目錄 V
表目錄 VII
圖目錄 VIII
第一章、研究背景與目的 1
1.1 研究背景 1
1.2 研究目的 2
第二章、文獻探討 3
2.1 呼吸系統構造 3
2.2 呼吸道黏液特性 4
2.3 呼出微粒機制探討 5
2.3.1 Turbulence induced aerosolization 5
2.3.2 Bronchiole Fluid Film Burst 6
2.4呼出微粒影響因子 7
第三章、研究方法 8
3.1 實驗系統 8
3.1.1 測試溶液的配置方式 8
3.1.2 單一薄膜產生系統 8
3.2 參數表 9
3.3 實驗儀器 10
第四章、結果與討論 13
4.1 單一薄膜產生系統 13
4.2 系統代謝時間 13
4.3 薄膜位於直管內的破裂高度 14
4.4 玻璃直管內流速變異 15
4.5 玻璃直管管徑差異 16
4.6 溶液特性 16
4.6.1 表面張力 17
4.6.2 黏滯度 18
4.7 微粒量測儀器計數比較 18
第五章、結論與建議 20
第六章、參考文獻 24


Almstrand, A.-C., Bake, B., Ljungstrom, E., Larsson, P., Bredberg, A., Mirgorodskaya, E. and Olin, A.-C., (2010). Effect of airway opening on production of exhaled particles. Journal of Applied Physiology, 108(3): 584-588.
Anwarul Hasan, M.D., Lange, C.F. and King, M.L., (2010). Effect of artificial mucus properties on the characteristics of airborne bioaerosol droplets generated during simulated coughing. Journal of Non-Newtonian Fluid Mechanics, 165(21-22): 1431-1441.
Basser, P.J., McMahon, T.A. and Griffith, P., (1989). The mechanism of mucus clearance in cough. Journal of biomechanical engineering, 111(4): 288-97.
Bernhard, W., Haagsman, H.P., Tschernig, T., Poets, C.F., Postle, A.D., van Eijk, M.E. and von der Hardt, H., (1997). Conductive airway surfactant: surface-tension function, biochemical composition, and possible alveolar origin. American Journal of Respiratory Cell and Molecular Biology, 17(1): 41-50.
Chao, C.Y.H., Wan, M.P., Morawska, L., Johnson, G.R., Ristovski, Z.D., Hargreaves, M., Mengersen, K., Corbett, S., Li, Y., Xie, X. and Katoshevski, D., (2009). Characterization of expiration air jets and droplet size distributions immediately at the mouth opening. Journal of Aerosol Science, 40(2): 122-133.
Cole, E.C. and Cook, C.E., (1998). Characterization of infectious aerosols in health care facilities: An aid to effective engineering controls and preventive strategies. American Journal of Infection Control, 26(4): 453-464.
Edwards, D.A., Man, J.C., Brand, P., Katstra, J.P., Sommerer, K., Stone, H.A., Nardell, E. and Scheuch, G., (2004). Inhaling to mitigate exhaled bioaerosols. Proceedings of the National Academy of Sciences of the United States of America, 101(50): 17383-17388.
Evrensel and Khan, (2003). Interaction of laminar airflow with viscoelastic airway mucus. Technology and Health Care, 11(3): 149-159.
Evrensel, C.A., Khan, R.U., Elli, S. and Krumpe, P.E., (1993). Viscous airflow through a rigid tube with a compliant lining: a simple model for the air-mucus interaction in pulmonary airways. Journal of biomechanical engineering, 115(3): 262-70.
Fabian, P., Brain, J., Houseman, E.A., Gern, J. and Milton, D.K., (2011). Origin of exhaled breath particles from healthy and human rhinovirus-infected subjects. Journal of Aerosol Medicine and Pulmonary Drug Delivery., 24(3): 137-147.
Fabian, P., McDevitt, J.J., DeHaan, W.H., Fung, R.O.P., Cowling, B.J., Chan, K.H., Leung, G.M. and Milton, D.K., (2008). Influenza virus in human exhaled breath: an observational study. PLoS ONE, 3(7): e2691.
Gehr, P., Geiser, M., Hof, V.I., Schurch, S., Waber, U. and Baumann, M., (1993). Surfactant and inhaled particles in the conducting airways: Structural, stereological, and biophysical aspects. Microscopy Research and Technique, 26(5): 423-436.
Haslbeck, K., Schwarz, K., Hohlfeld, J.M., Seume, J.R. and Koch, W., (2010). Submicron droplet formation in the human lung. Journal of Aerosol Science, 41(5): 429-438.
Hassan, A.A., Evrensel, C.A. and Krumpe, P.E., (2006). Clearance of viscoelastic mucus simulant with airflow in a rectangular channel, an experimental study. Technology and Health Care, 14(1): 1-11.
Hickey, A.J., (2007). Inhalation aerosols: Physical and biological basis for therapy, Second edition 221: 258-262.
Hirsch, S., 1975. The role of mucus in asthma. New directions in asthma. American College of Chest Physicians, Park Ridge.
Hohlfeld, J., (2002). The role of surfactant in asthma. Respiratory Research, 3(1): 1-8.
Holmgren, H. and Ljungstrom, E., (2012). Influence of film dimensions on film droplet formation. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 25(1): 47-53.
Holmgren, H., Ljungstrom, E., Almstrand, A.-C., Bake, B. and Olin, A.-C., (2010). Size distribution of exhaled particles in the range from 0.01 to 2.0 μm. Journal of Aerosol Science, 41(5): 439-446.
Kaliner, M., Shelhamer, J.H., Borson, B., Nadel, J., Patow, C. and Marom, Z., (1986). Human respiratory mucus. The American review of respiratory disease, 134(3): 612-21.
Kilburn, K.H., (1968). A hypothesis for pulmonary clearance and its implications. The American review of respiratory disease, 98(3): 449-63.
Kim, C.S., Greene, M.A., Sankaran, S. and Sackner, M.A., (1986). Mucus transport in the airways by two-phase gas-liquid flow mechanism: continuous flow model. Journal of Applied Physiology, 60(3): 908-917.
Kim, C.S., Iglesias, A.J. and Sackner, M.A., (1987). Mucus clearance by two-phase gas-liquid flow mechanism: asymmetric periodic flow model. Journal of Applied Physiology, 62(3): 959-971.
King, M., Brock, G. and Lundell, C., (1985). Clearance of mucus by simulated cough. Journal of Applied Physiology, 58(6): 1776-1782.
Lippmann, M., 2001. Size-selective health hazard sampling. Air smapling instruments 9th ed. ACGIH, Cincinnati, ohio.
Malashenko, A., Tsuda, A. and Haber, S., (2009). Propagation and Breakup of Liquid Menisci and Aerosol Generation in Small Airways. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 22(4): 341-353.
Marom, Z.M. and Goswami, S.K., (1991). Respiratory mucus hypersecretion (bronchorrhea): A case discussion—possible mechanism(s) and treatment. Journal of Allergy and Clinical Immunology, 87(6): 1050-1055.
Morawska, L., Johnson, G.R., Ristovski, Z.D., Hargreaves, M., Mengersen, K., Corbett, S., Chao, C.Y.H., Li, Y. and Katoshevski, D., (2009). Size distribution and sites of origin of droplets expelled from the human respiratory tract during expiratory activities. Journal of Aerosol Science, 40(3): 256-269.
Moriarty, J.A. and Grotberg, J.B., (1999). Flow-induced instabilities of a mucus–serous bilayer. Journal of Fluid Mechanics, 397: 1-22.
Papinen, R.S. and Rosenthal, F.S., (1997). The size distribution of droplets in the exhaled breath of healthy human subjects. Journal of Aerosol Medicine, 10(2): 105-116.
Ross, B.B., Gramiak, R. and Rahn, H., (1955). Physical dynamics of the cough mechanism. Journal of Applied Physiology, 8(3): 264-268.
Schwarz, K., Biller, H., Windt, H., Koch, W. and Hohlfeld, J.M., (2010). Characterization of exhaled particles from the healthy human lung—a systematic analysis in relation to pulmonary function variables. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 23(6): 371-379.
Van der Schans, C.P., (2007). Bronchial mucus transport. Respiratory Care, 52(9): 1150-1158.
Weibel, E.R., (1965). Morphometry of the human lung. Anesthesiology, 26(3): 367.
West, J., (2012). Respiratory physiology: the essentials 9th ed.: 16-18.
WHO, 2003. Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003.
WHO, (2009). WHO public health research agenda for influenza version 1. 2-3.
林婉婷, (2011). 人體呼出微粒經測系統之應用. Application of an exhaled breath aerosol monitoring system: 台灣大學.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔