(3.236.82.241) 您好!臺灣時間:2021/04/13 02:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王迪諾
研究生(外文):Dino Caesaron
論文名稱:真實與虛擬環境下近身區域的知覺配對距離估計
論文名稱(外文):PERCEPTUAL MATCHING DISTANCE ESTIMATION WITHIN PERI-PERSONAL SPACE IN REAL AND VIRTUAL ENVIRONMENTS
指導教授:林久翔林久翔引用關係
指導教授(外文):Chiuhsiang Lin
口試委員:林久翔
口試日期:2012-06-18
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:工業管理系
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:73
中文關鍵詞:自我中心近身距離非自我中心3D眼鏡雙眼視線偏移視覺範圍
外文關鍵詞:egocentricperi-personalHMDexocentric3D glassesParallaxfield of view
相關次數:
  • 被引用被引用:0
  • 點閱點閱:122
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究調查十位受測者在真實環境與虛擬環境下對物件間距離的認知,每位受測者必須穿戴3D眼鏡作六種不同物件呈現方式並結合三種不同物件呈現位置的距離估計,每次實驗受測者共需作72個距離估計,兩物件間距在10公分至50公分之間。過去的研究顯示在離受測者近身距離下受測者與物件間距離的估計為高估,與本實驗結果在離受測者近身距離下兩物件間距離的估計有所不同,在真實物件呈現於下方視野時會影響對距離的估計與過去的研究結果一致,而對真實物件和虛擬物件間距離的低估程度也與過去在使用頭戴式顯示器的結果相同。雖然目前實驗的結果仍無法解釋為何在離受測者近身距離下兩物件間距離的估計為低估,無論如何,在變異數分析中顯示真實物件與虛擬物件間的呈現方式及呈現位置皆對距離估計的準確性有顯著的影響。F(5,45)=7.285和p<0.5。但是,當F(2,18)=4.934和p=0.02時
The present study investigated distance perception both in virtual and real environments within exocentric distance at peri-personal space. Ten participants estimated 72 target distances between 10 cm and 50 cm in six different target positions combined with three different parallaxes. The study examined virtual targets seen through the 3D glasses, and combined real and virtual objects. The results give evidence that the exocentric distance of virtual and combined real and virtual objects is underestimated at peri-personal distance, a different result from a previous cross study that has been found in egocentric distance in the same peri-personal space. The interesting aspect of this finding is that our result is consistent with a previous study, regarding the implication of a misleading field of view when real object placed in lower side. This result indicates the same degree of underestimation when showed both the real + virtual environments with HMD technology. Although, the results show that participants underestimated the distance for exocentric within peri-personal space, the reason why this happened remains unknown. Understanding these issues should lead to useful and applicable virtual reality technology improvement. However, the ANOVA result shows that the way we positioned a real and virtual target (layout) is affecting the accuracy of estimation, F(5,45) = 7.285 and p < .05, while, the parallax also has effect on the accuracy of distance estimation F(2,18) = 4.934 and p = 0.02
誌 謝 iv
論 文 摘 要 v
ABSTRACT vi
LIST OF FIGURES ix
LIST OF TABLES x
CHAPTER 1 1
INTRODUCTION 1
1.1 Research Background 1
1.2 Research Objective 3
1.3 Research Limitations 3
1.4 Study Framework 4
CHAPTER 2 6
LITERATURE STUDY 6
2.1 How We See 3D (Three-Dimensional) 6
2.2 Distance Estimation 8
2.3 Distance Estimation Judgments 8
2.4 Distance Estimation within Peri-Personal Space 10
2.5 Distance Estimation in Real and Virtual Environment 11
2.6 Previous Studies in along Same Area 12
CHAPTER 3 14
RESEARCH METHODOLOGY 14
3.1 Experimental Design 14
3.1.1 Research Model 14
3.1.2 Experimental Variables 16
3.1.3 Experimental Setup and Task 18
3.1.4 Procedure 20
3.1.5 Hypothesis and Prediction 23
CHAPTER 4 25
RESULT 25
4.1 Classified Values 25
4.1.1 Distance Judgment Type 25
4.1.2 One Way ANOVA and Paired t-test for Judgment Type 26
4.1.3 Average Error of Distance Estimation 27
4.2 Numerical Estimations 28
4.2.1 Paired t-test of Mean Estimated Distance and Scaled Distance 28
4.2.2 Comparisons of Average Observers’ Judgment and Actual Distance 30
4.2.3 Within-Subjects ANOVA Summary 34
4.2.4 Post-Hoc Test 36
CHAPTER 5 38
DISCUSSION 38
5.1 Underestimated in Per-Personal Space Distance 38
5.2 Effect of Layout and Parallax to Distance Estimation 39
5.3 Methodological Improvements 40
CHAPTER 6 42
CONCLUSION 42
6.1 Conclusion 42
6.2 Future Research 43
References 44
APPENDICES 47
Experiment Condition 47
Participant Consent Form 48
Complete Analysis of Variance (ANOVA) 49
Post Hoc Test-Bonferonni Correction Test (parallax) 50
Observers’ Judgment Score Sheet for each Combination 51
www.google.com, 2012.
Ambruster, C., Wolter, M., & Kuhlen, T. (2008). Depth perception in virtual realiy: Distance estimation in peri- and extrapersonal space. CyberPsychology & Behavior, 11(1), 9-15.
Biederman, I. (1987). Recognition-by-components: A theory of human image understanding. Psychological Review, 94, 115-147.
Bridgeman, B., Kirch, M., & Sperling, A. (1981). Segregation of cognitive and motor aspects of visual function using induced motion. Perception and Psychophysics, 29(4), 336-342.
Bridgeman, B., Peery, S., & Anand, S. (1997). Interaction of cognitive and sensorimotor maps of visual space. Perception and Psychophysics, 59, 456-469.
Carlson, L. A., & Logan, G. D. (2001). Using spatial terms to select an object. Memory and cognition, 29, 883-892.
Carlson-Radvansky, L. A., & Irwin, D. E. (1993). Frames of reference in vision and language: Where is above? Cognition, 191-214.
Creem-Regehr, S. H., Willemsen, P., Gooch, A. A., & Thompson, W. B. (2005). The influence of restricted viewing conditions on egoncentric distance perception: Implications for real and virtual environments. Perception, 34(2) 191-204.
Cutting, J. E., & Vishton, P. M., (1995). Perceiving layout and knowing distances: The integration, relative potency, and contextual use of differenct information about depth, in W. Epstein, & S. Rogers (Eds. 5), Perception of space and motion (page 69-117). San Diego, CA: Academic Press.
Ellis, S., & Menges, B. (1997). Judgments of the distance to nearby virtual objects: Interaction of viewing conditions and accommodative demand. Presence: Teleoperators & virtual environments, 6(4), 452-460.
Ellis, S. R., & Menges, B. M. (1998). Localization of virtual objects in the near visual field. Human factors, 40(3), 415-431.
Foley, J. M. (1993). Stereoscopic distance perception. In Ellis, S. R., Kaiser, M. K., & Grunwald, A. J. Pictorial comm. in virtual and real environments (2nd Ed) (page 558-566). Taylor & Francis.
Gilinsky, A. S. (1951). Perceived size and distance in visual space. Psychological Review, 58, 460-482.
Knapp, J. M., & Loomis, J. M. (2004). Limited field of view of head mounted displays is not the cause of distance underestimation in virtual environments. Presence: Teleoperators and virtual environments, 13(5), 572-577.
Lee, D. N. (1980). Visuo-motor coordination in space-time. North-Holland, volume 1. Amsterdam: G.E. Stelmach and J. Requin.
Loomis, J. M., & Knapp, J. M. (2003). Visual perception of egocentric distance in real and virtual environments. In Hettinger, L. J., & Haas, J. W. Virtual and adaptive environments: Applications, implications and human performance issues (page 21-46). Lawrence Erlbaum Assoc.
Loomis, J. M., Blascovich, J. J., & Beall, A. C. (1999). Immersive virtual environment technology as a basic research tool in psychology. Behavior Res. Methods, Instruments, Computer, 31(4), 557-564.
Loomis, J. M., Da Silva, J. A., Philbeck, J. W., & Fukusima, S. S. (1996). Visual perception of location and distance. Current Directions in Psychological Science, 5(3), 72-77.
McBeath, M. K., Shaffer, D. M., & Kaiser, M. K. (1995). How baseball outfielders determine where to run to catch fly ball. Science, 268, 569-573.
Messing. R, & Durgin, F. H. (2005). Distance perception and the visual horizon in head-mounted displays. ACM Trans. Applied Perception, 2(3), 234-250.
Previs, F. H. (1998). The neuropsychology of 3-D space. Psychological bulletin, 124, 123-164.
Rolland, J. P, Gibson, W., & Ariely, D. (1995). Towards quantifying depth and size perception in virtual environments. Presence: Teleoperators and Virtual Environments, 4(1) 24-49.
Rolland, J. P., Meyer, C. A., Arthur, K. & Rinalducci, E. J. (2002). Method of adjustments versus method of constant stimuli in the quantification of accuracy and precision of rendered depth in head-mounted displays. Presence: Teleoperators and Virtual Environments, 11(6), 610-623.
Saracini, C., Franke, R., Blumel, E., & Belardinelli, M. O. (2009). Comparing distance perception in different virtual environments. Cogn Process, 10(2), 294-296.
Seigle, D. C. (2009). Dimensionalization. 3rd Dimension (page 69-75). Veritas et Visus.
Swan, J. E., & Livingston, M. A. (2007). Egocentric depth judgments in optical, see-through augmented reality. IEEE Transactions on Visualization and Computer Graphics, 13(3) 429-442.
Swan, J. E., Livingston, M. A., Smallman, H. S., Brown, D., Baillot, Y., Gabbard, J. L. (2006). A perceptual matching technique for depth judgments in optical, see-through augmentd reality. Proceedings of IEEE virtual reality (page 25-29). Virginia: IEEE.
Thompson, W. B., Willemsen, P., Gooch, A. A., Creem-Regehr, S. H., Loomis, J. M., & Beall, A. C. (2004). Does the quality of the computer graphics matter when judging Distances in visually immersive environments. Presence, 13(5), 560-571.
Viguier, A., Clement, G., & Trotter, Y. (2001). Distance perception within near visual space. Perception, 30, 115-124.
Wang, R. F. (2004). Action, verbal response and spatial reasoning. 94(2), Cognition, 185-192.
Wann, J., & Mon-Williams, M. (1996). What does virtual reality NEED?: Human factors issues in the design of three-dimensional computer environments. Int. J. Human-Computer Studies, 44, 829-847.
Warren, W. H. (1990). The perception-action coupling, in sensory motor organization and development in infancy and early childhood. Netherlands: Kluwer Academic.
Wickens, C. D., & Hollands, J. G. (2000). Engineering psychology and human performance, 3rd edition. Prentice Hall.
Wu, B., Ooi, T. L., & He, Z. J. (2004). Perceiving distance accurately by a directional process of integrating ground information. Nature, 428, 73-77.
Ziemer, C. J., Plumert, J. M., Cremer, J. F., & Kearney, J. K. (2009). Estimating distance in real and virtual environments: Does order make a difference? Attention, Perception, & Psychophysics, 71(5), 1095-1106.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔