(34.239.176.198) 您好!臺灣時間:2021/04/23 18:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王韻晴
研究生(外文):Yun-chin Wang
論文名稱:以沉浸經驗探討行動資訊內容之服務創新
論文名稱(外文):A Study on Flow Experience Induced by Service Innovation of Mobile Digital Contents
指導教授:曾盛恕曾盛恕引用關係
指導教授(外文):Seng-su Tsang
口試委員:曾盛恕
口試日期:2012-06-08
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:企業管理系
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:50
中文關鍵詞:新穎性沉浸經驗計畫行為理論
外文關鍵詞:noveltyflow experiencetheory of planed behavior
相關次數:
  • 被引用被引用:4
  • 點閱點閱:1066
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:508
  • 收藏至我的研究室書目清單書目收藏:2
本研究以適地性服務概念為基礎,提供行動資訊創新服務之新穎性(Novelty)內容,並參考近年來常應用於消費者行為研究中的沉浸理論(Flow Theory)(Huang, 2003),及廣泛運用於解釋個人行為的計畫行為理論(TPB),探討使用者使用創新資訊服務行為意圖及沉浸經驗之影響。本研究實驗設計主要以行動裝置為傳輸媒介,在人群流量大的大眾運輸五個據點傳遞行動數位資訊服務內容,其資訊服務內容設計依據「使用者需求不確定性」高低以及「數位資訊內容廣度」寬窄分五種不同配適組合,並藉由發放問卷探討使用行動數位內容,使用者不確定性高低及行動資訊服務內容廣度所形成之配適度組合。

本研究發放紙本問卷600份,全數回收,有效問卷為596份。並採用線性結構方程模式(Partial Least Squares, PLS)對研究模型進行分析。分析結果顯示,高配適度組之信效度(AVE值與CR值)皆合乎標準,其迴歸可解釋變異量(R2值)也較高,使得模型解釋能力較高。本研究之學術貢獻在於綜合了新穎性、沉浸經驗及計畫行為理論,應用於行動裝置資訊服務上的創新,企業可依此作為未來發展新行動資訊服務時的參考依據,預先推測使用者在使用服務時,主要是受到哪些因素影響其沉浸經驗,及該如何針對不同使用者族群之需求設計其資訊服務內容,以提升服務品質及效用。
This paper based on the concept of Location-based services (LBS) to supply novelty contents for the mobile digital innovation service. We referred to the Flow Experience model (Huang, 2003) in recent years often used in consumer behavior researches and also referred to the Theory of Planed Behavior (TPB) model which both widely applied to explain individual behavior to explore what factors will affect individual's behavioral intentions and flow experience by use innovation information service. Our experimental design use the mobile devices as a medium to deliver service contents, and choice five different public transportations that have a large number of people to pass through as our deliver location. We also considered the height of “uncertain customers’ needs” and the range of “digital contents” to design five mobile digital service contents, and further to test and verify the goodness of fit by using questionnaires.

A total of 600 questionnaires were sent and all were collected, 596 responses were completed. The collected data were analyzed by Partial Least Squares (PLS) and to test the model. The results reveal that high goodness of fit group has standard AVE and CR value, which also has higher R square make the model more interpretability. This research combines Novelty, Flow Experience and TPB theory, and apply on mobile digital devices service innovation. Companies can use this research as their base to development new service in mobile digital content. In addition, they will able to predict what factors will affect different user group in order to design the contents to a specific group and to facilitate service quality and efficiency.
目錄
1. 緒論...............................................1
1.1 研究背景與動機......................................2
1.2 研究目的...........................................2
1.3 研究流程...........................................3
2. 文獻探討............................................4
2.1 服務創新之新穎性(Novelty)............................5
2.2 沉浸理論(Flow Theory)..............................6
2.3 計劃行為理論(Theory of Planed Behavior, TPB)........9
2.3.1 行為意圖(Behavior Intention).....................11
2.3.2 態度(Attitude)..................................11
2.3.3 主觀規範(Subject Norm)...........................11
2.3.4 知覺行為控制Perceived Behavioral Control).........12
2.4 研究假說及架構......................................12
3. 研究方法............................................15
3.1實驗設計與研究對象....................................15
3.3.1 生活專刊-捷運景美站(高配適度)........................16
3.1.2 教育專刊-南陽街(高配適度)...........................17
3.1.3 藝文專刊-捷運圓山站(高配適度)........................18
3.1.4 旅遊專刊-台北火車站(低配適度)........................19
3.1.5 娛樂專刊-信義商圈(低配適度)..........................20
3.3問卷設計.............................................21
3.4資料分析方法及工具.....................................23
4. 研究結果.............................................24
4.1 資料蒐集與描述性統計..................................24
4.2 信度分析及因素分析....................................25
4.3 結構方程模式分析......................................29
4.3.1 組合信度與收斂效度分析...............................29
4.3.2 全部樣本PLS模型....................................33
4.3.3 實驗模型配適度結果分析 ...............................36
5. 結論與建議............................................42
5.1 結論................................................42
5.2 管理意涵.............................................42
5.3 研究貢獻.............................................44
5.4 研究限制與未來研究方向..................................46
參考文獻.................................................47
Aizen, I. (1985). From intentions to actions: A theory of planned behavior. Action-control: From cognition to behavior, 11-39.
Ajzen, I. (1988). Attitudes, behavior and personality. Chicago: Dorsey.
Ajzen, I. (1989). Attitude structure and behavior. Attitude structure and function, 241-274.
Ajzen, I. (1991). The theory of planned behavior. Organizational behavior and human decision processes, 50(2), 179-211.
Ajzen, I., & Fishbein, M. (1980). Understanding attitudes and predicting social behavior (Vol. 278): Prentice-Hall.
Ajzen, I., & Madden, T. J. (1986). Prediction of goal-directed behavior: Attitudes, intentions, and perceived behavioral control. Journal of experimental social psychology, 22(5), 453-474.
Barclay, D., Higgins, C., & Thompson, R. (1995). The partial least squares (PLS) approach to causal modeling: Personal computer adoption and use as an illustration. Technology studies, 2(2), 285-309.
Barkuus, L., & Dey, A. (2003). Location-based services for mobile telephony.
Berlyne, D. E. (1974). Studies in the new experimental aesthetics: Steps toward an objective psychology of aesthetic appreciation: Hemisphere.
Berlyne, D. E., Craw, M. A., & Salapatek, P. H. (1963). Novelty, complexity, incongruity, extrinsic motivation, and the GSR. Journal of Experimental Psychology, 66, 560-567.
Bianchi, M. (1998). Consuming novelty: strategies for producing novelty in consumption. Journal of Medieval and Early Modern Studies, 28(1), 3-18.
Bilche, T. D. R. a. G. (2003). An overview of location-based services. BT Technology Journal, 21, 20-27.
Bridges, E., & Florsheim, R. (2008). Hedonic and utilitarian shopping goals: The online experience. Journal of Business Research, 61(4), 309-314.
Chang, M. K. (1998). Predicting unethical behavior: a comparison of the theory of reasoned action and the theory of planned behavior. Journal of Business Ethics, 17(16), 1825-1834.
Chin, W. W. (1998). The partial least squares approach for structural equation modeling.
Choi, D., Kim, H., & Kim, J. (2000). A cognitive and emotional strategy for computer game design. Journal of MIS Research, 10(1), 165-187.
Csikszentmihalyi, M. (1997). Finding flow: The psychology of engagement with everyday life: Basic Books.
Csikszentmihalyi, M., & Rathunde, K. (1993). The measurement of flow in everyday life: toward a theory of emergent motivation.
Csiksznentmihalyi. (1975). Beyond Boredom and Anxiety.
D'Roza, T., & Bilchev, G. (2003). An overview of location-based services. BT Technology Journal, 21(1), 20-27.
Dao, D., Rizos, C., & Wang, J. (2002). Location-based services: technical and business issues. GPS Solutions, 6(3), 169-178. doi: 10.1007/s10291-002-0031-5
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: a comparison of two theoretical models. Management science, 982-1003.
Fichman, R. G., & Kemerer, C. F. (1993). Adoption of Software Engineering Process Innovation: The Case of Object orientation.
Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention and behaviour: An introduction to theory and research: Addison-Wesley.
Fornell, C., & Bookstein, F. L. (1982). Two structural equation models: LISREL and PLS applied to consumer exit-voice theory. Journal of marketing research, 440-452.
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of marketing research, 39-50.
Gharbi, J. E., & Tunis, E. (2002). The influence of flow on hedonic and utilitarian shopping values. Advances in Consumer Research, 29, 483-484.
Graber, S., Czellar, S., & Denis, J. E. (2002). Using Partial Least Regression in Marketing Research.
Greenberger, Woldman, & Yourshaw. (1967). COMPONENTS OF CURIOSITY: BERLYNE RECONSIDERED. British Journal of Psychology, 58(3-4), 375-386.
Hair, J. F., Anderson, R. E., Tatham, R. L., & Black, W. C. (1998). Multivariate analysis. Englewood: Prentice Hall International.
Hawkins, D. T. (1994). Electronic advertising on online information systems. Online, 18(2), 26-39.
Hoffman, D. L., & Novak, T. P. (1996). Marketing in hypermedia computer-mediated environments: conceptual foundations. The Journal of Marketing, 50-68.
Hoffman, D. L., & Novak, T. P. (2009). Flow online: lessons learned and future prospects. Journal of Interactive Marketing, 23(1), 23-34.
Hoffman, T. P. N. a. D. L., & Duhachek, A. (2003). The Influence of Goal-Directed and Experiential Activites on Online Flow Experiences. Journal of Consumer Psychology.
Huang, M.-H. (2003). Designing website attributes to induce experiential encounters. Computers in Human Behavior, 19(4), 425-442. doi: 10.1016/s0747-5632(02)00080-8
Jenkins, J. A. (1969). An experimental investigation of the effects of structured science experiences on curiosity among fourth grade children. Journal of research in science teaching, 6(2), 128-135.
Johansson, J. K., & Yip, G. S. (1994). Exploiting globalization potential: US and Japanese strategies. Strategic Management Journal, 15(8), 579-601.
Koufaris, M. (2002). Applying the technology acceptance model and flow theory to online consumer behavior. Information systems research, 13(2), 205-223.
Kwee, A. T., & Tsai, F. S. (2009). Mobile novelty mining. International Journal of Advanced Pervasive and Ubiquitous Computing, 1(4), 43-68.
Liao, C., Chen, J.-L., & Yen, D. C. (2007). Theory of planning behavior (TPB) and customer satisfaction in the continued use of e-service: An integrated model. Computers in Human Behavior, 23(6), 2804-2822. doi: 10.1016/j.chb.2006.05.006
Liao, C., Chen, J. L., & Yen, D. C. (2007). Theory of planning behavior (TPB) and customer satisfaction in the continued use of e-service: An integrated model. Computers in Human Behavior, 23(6), 2804-2822.
Lin, H. F. (2006). Understanding behavioral intention to participate in virtual communities. CyberPsychology & Behavior, 9(5), 540-547.
Madden, T. J., Ellen, P. S., & Ajzen, I. (1992). A comparison of the theory of planned behavior and the theory of reasoned action. Personality and social psychology Bulletin, 18(1), 3-9.
Mathieson, K. (1991). Predicting user intentions: comparing the technology acceptance model with the theory of planned behavior. Information systems research, 2(3), 173-191.
Nunnally, J. (1978). C.(1978). Psychometric theory: New York: McGraw-Hill.
Pace, S. (2004). A grounded theory of the flow experiences of Web users. International journal of human-computer studies, 60(3), 327-363.
Pearce, J. M., Ainley, M., & Howard, S. (2005). The ebb and flow of online learning. Computers in Human Behavior, 21(5), 745-771.
Richard, M. O., & Chandra, R. (2005). A model of consumer web navigational behavior: conceptual development and application. Journal of Business Research, 58(8), 1019-1029.
Ringle, C. M., Wende, S., & Will, A. (2005). SmartPLS 2.0 (beta).
Schifter, D. E., & Ajzen, I. (1985). Intention, perceived control, and weight loss: An application of the theory of planned behavior. Journal of Personality and Social Psychology, 49(3), 843.
Shin, N. (2006). Online learner’s ‘flow’experience: an empirical study. British Journal of Educational Technology, 37(5), 705-720.
Trevino, L. K., & Webster, J. (1992). Flow in computer-mediated communication. Communication research, 19(5), 539.
Tsai, F. S., Etoh, M., Xie, X., Lee, W. C., & Yang, Q. (2010). Introduction to mobile information retrieval. IEEE Intelligent Systems, 25(1), 11-15.
Tsai, F. S., Han, W., Xu, J., & Chua, H. C. (2009). Design and development of a mobile peer-to-peer social networking application. Expert Systems with Applications, 36(8), 11077-11087. doi: 10.1016/j.eswa.2009.02.093
Tsai, F. S., Kwee, A. T., Tang, W. H. S., & Chan, K. L. (2010). Adaptable Services for Novelty Mining. International Journal of Systems and Service-Oriented Engineering, 1(2), 69-85. doi: 10.4018/jssoe.2010040105
Webster, J., Trevino, L. K., & Ryan, L. (1993). The dimensionality and correlates of flow in human-computer interactions. Computers in Human Behavior, 9(4), 411-426.
Wells, J. D., Campbell, D. E., & Featherman, J. S. V. a. M. (2010). The Effect of Perceived Novelty on the Adoption of Information Technology Innovations: A Risk/Reward Perspective. Decision Sciences Journal, 41(4).
Xia Skadberg, Y., & Kimmel, J. R. (2004). Visitors' Flow experience while browsing a web site: its measurement, contributing factors and consequences. Computers in Human Behavior, 20(3), 403-422.
Yun Chen, S.Tsai, F., & Chan, K. L. (2007). Blog Search and Mining in the Business Domain.
Zhang, Y., Callan, J., & Minka, T. (2002). Novelty and Redundancy Detection in Adaptive Filtering.
資策會FIND/經濟部技術處. (2011). 台灣智慧型手機行為:社群、拍照與定位成三大關鍵. 科技化服務價值鏈研究與推動計畫.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔