跳到主要內容

臺灣博碩士論文加值系統

(44.192.94.177) 您好!臺灣時間:2024/07/16 23:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳翰承
研究生(外文):Han Cheng Wu
論文名稱:應用相位平移輪廓法於血糖儀電極高度資訊重建
論文名稱(外文):Application of Phase Shifting Profilometry Method in the Height Information Reconstruction for Electrode of Glucose Meter
指導教授:郭中豐郭中豐引用關係
指導教授(外文):Chung-Feng Kuo
口試委員:郭中豐
口試日期:2012-07-26
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:自動化及控制研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:122
中文關鍵詞:相位平移輪廓法改良式數位正弦條紋產生亮度校正色彩條紋影像
外文關鍵詞:Phase Shifting Profilometry MethodImproved Sinusoidal Fringe FormulaBrightness CorrectionColor Sinusoidal Fringe Image.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:174
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究應用相位平移輪廓法於血糖儀電極高度資訊重建,因血糖儀電極採用沖壓模之方式製造,其表面會有沖頭擠壓後之凹陷,為了解其血糖儀電極之凹陷變化程度,以得知血糖儀電極與血液接觸資訊,故需重建血糖儀電極高度資訊。
本研究提出改良式數位正弦條紋產生公式,改善傳統過渡曝光之問題,並結合田口方法來找出其最佳水準值,產生條紋亮度對比度較高的數位正弦條紋影像,再利用亮度校正方程式改善投射角度與參考平面具有偏斜,會造成其亮度偏差之問題。本研究藉由數位光處理(digital light processing, DLP)投影機進行投影並分析進行其高度資訊重建,其量測精確度為0.008mm;還使用彩色影像處理技術,產生不同色彩正弦條紋影像,找出適合血糖儀電極之色彩正弦條紋影像,經由實驗分析後,使用黃色數位正弦條紋來進行血糖儀電極之高度資訊重建,能突顯血糖儀電極表面相位資訊,進而重建精確血糖儀電極高度資訊。本研究使用相位平移輪廓法於血糖儀電極高度量測,可得知其高度變化資訊,以提升血糖儀量測血糖值之準確性。
This study applied the phase shifting profilometry method in the height information reconstruction for electrode of glucose meter. Since electrode of glucose meter is produced by using the stamping die manufacturing, its surface may have punch extrusion depression. The electrode of glucose meter height information needs to be rebuilt to demonstrate the depression change level of the electrode of glucose meter, and acquire the information of the contact between the electrode of glucose meter and blood.
This study proposed the improved sinusoidal fringe formula to improve the traditional transitional exposure, and found the optimal levels by integrating the Taguchi method to produce digital sinusoidal fringe image of strip brightness of high contrast. The brightness correction equation was employed to improve the projection angle and the reference plane divergence, which may result in the problem of brightness deviation. This study used the DLP (digital light processing) projector for projection and analysis to reconstruct the height information. The measurement accuracy is 0.008mm. The color image processing technology was used to produce different color sinusoidal fringe images to identify suitable color sinusoidal fringe images for the electrode of glucose meter. According to the experimental analysis, using the yellow digital sinusoidal fringe for the height information reconstruction of the electrode of glucose meter could highlight the electrode of glucose meter surface phase information, and further reconstruct the accurate electrode of glucose meter height information. This study application the phase shifting profilometry method in electrode of glucose meter height measurement, and obtained height change information to improve the accuracy of blood glucose meter in the measurement of the blood glucose level.
摘要 I
Abstract II
致謝 III
目錄 V
圖目錄 VIII
表目錄 XI
第1 章 緒論 1
1.1 研究背景與動機 1
1.2 研究範圍與目的 2
1.3 文獻回顧 3
1.3.1 三維量測技術 3
1.3.2 相位輪廓法 5
1.4 研究流程與架構 8
第2 章 相位平移輪廓系統 12
2.1 相位平移輪廓法 12
2.2 DLP 投射元件 19
2.3 軟硬體架構 21
第3 章 數位正弦條紋校正 25
3.1 顏式數位正弦條紋 25
3.2 改良式數位正弦條紋 30
3.3 田口方法 31
3.3.1 田口方法概論 32
3.3.2 直交表及實驗規劃 35
3.3.3 S/N 比及因子反應表 37
3.3.4 變異數分析 39
3.3.5 確認實驗 43
3.4 亮度校正 48
第4 章 血糖儀電極高度資訊重建 54
4.1 系統量測流程 54
4.2 系統參數校正 56
4.3 色彩數位正弦條紋 59
4.4 血糖儀電極高度重建實驗 62
4.4.1 白色數位正弦條紋 63
4.4.2 紅色數位正弦條紋 65
4.4.3 綠色數位正弦條紋 66
4.4.4 藍色數位正弦條紋 68
4.4.5 紫色數位正弦條紋 69
4.4.6 青色數位正弦條紋 71
4.4.7 黃色數位正弦條紋 72
4.4.8 高度重建之結果討論 74
第5 章 結論與未來展望 76
5.1 結論 76
5.2 未來展望 77
參考文獻 78
附錄A:色彩數位正弦條紋之田口方法求得最佳水準值 85
作者簡介 106
[1] 林宏達,「認識糖尿病」,台灣糖尿病協會,台灣台北,2001 年。
[2] 鄭惠如,「米麩油的攝取對STZ 誘導糖尿病大白鼠血糖控制及脂質代謝之影響」,臺北醫學大學保健營養學研究所碩士論文,2004。
[3] 李易昌、陳聲平、洪淵庭、余振興與陳炳堅,「糖尿病共同照護在不同照護場所對口服用藥之第2 型糖尿病的照護品質比較-以北市單一行政區為例」,中華民國糖尿病衛教學會,台灣台北,2010 年。
[4] J. C. N. Chan, R. Y. M. Wong, C. K. Cheung, P. Lam, C. C. Chow, V. T. F. Yeung, E. C. Y. Kan, K. M. Loo, M. Y. L. Mong and C. S. Cockram, “Accuracy, Precision and User-Acceptability of Self Blood Glucose Monitoring Machines”, Diabetes Research and Clinical Practice, vol. 36, pp. 91-104, 1997.
[5] R. R. Lathrop, Jr., “Solder Paste Print Qualification Using Laser Triangulation”, IEEE Transactions on Components, Packaging, and Manufacturing Technology-Part C., vol. 20, no. 3, pp. 174-182, 1997.
[6] H. Tsukahara, Y. Nishiyama, F. Takahashi, T. Fuse and M. Ando, “High-Speed 3D Inspection System for Solder Bumps”, Proceedings of SPIE-The International Society for Optical Engineering, Washington USA, vol. 2597, pp. 168-177, 1995.
[7] H. Roth, T. Neubrand and T. Mayer, “Improved Inspection of Miniaturised Interconnections by Digital X-ray Inspection and Computed Tomography”, 2010 12th Electronics Packaging Technology Conference, Singapore, pp. 441-444, Dec. 2010.
[8] J. Yoon, J. Lee, B. Kim and Y. G. Shin, “An Automated Detection Method of Solder Joint Defects Using 3D Computed Tomography for IC Package Inspection”, 2011 First ACIS International Symposium on Software and Network Engineering, South Korea, pp. 3-6, South Korea, Dec. 2011.
[9] P. Eisert, E. Steinbach and B. Girod, “Automatic Reconstruction of Stationary 3-D Objects from Multiple Uncalibrated Camera Views”, IEEE Transactions on Circuits and Systems for Video Technology, vol. 10, no. 2, pp. 261-277, 2000.
[10] L. M. Song, M. P. Wang, L. Lu and H. J. Huang, “High Precision Camera Calibration in Vision measurement”, Optics and Laser Technology, vol. 39, pp. 1413-1420, 2007.
[11] 蔡明和,「機器視覺演算法與應用」,新亞州儀器股份有限公司,台灣台中,2011 年。
[12] S. Y. Cho and T. W. S. Chow, “Neural Computation Approach for Developing a 3-D Shape Reconstruction Model”, IEEE Transactions on Neural Network, vol. 12, no. 5, pp. 1204-1214, 2001.
[13] F. C. Yang, C. H. Kuo, J. J. Wing and C. K. Yang, “Reconstructing the 3D Solder Paste Surface Model Using Image Processing and Artificial Neural Network”, 2004 IEEE International Conference on System, Man and Cybernetics, Hague, vol. 3, pp. 3051-3056, Oct. 2004.
[14] Z. Xiao, O. Chee and A. Asundi, “An Accurate 3D Inspection System Using Heterodyne Multiple Frequency Phase-Shifting Algorithm”, Physics Procedia, vol. 19, pp. 115-121, 2011.
[15] W. H. Su, “Color-Encoded Fringe Projection for 3D Shape Measurements”, Optics Express, vol. 15, no. 20, pp. 13167-13181, 2007.
[16] M. Takeda and K. Mutoh, “Fourier Transform Profilometry for The Automatic Measurement of 3-D Object Shapes”, Applied Optics, vol. 22, no. 24, pp. 3977-3982, 1983.
[17] V. Srinivasan, H. C. Liu and M. Halioua, “Automated Phase-Measuring Profilometry: A Phase Mapping Approach”, Applied Optics, vol. 24, no. 2, pp. 185-188, 1985.
[18] P. S. Huang and S. Zhang, “Fast Three-Step Phase-Shifting Algorithm”, Applied Optics, vol. 45, no. 21, pp, 5086-5091, 2006.
[19] D. Ganotra, J. Joseph and K. Singh, “Object Reconstruction in Multilayer
Neural Network Based Profilometry Using Grating Structure Comprising Two Regions with Different Spatial Periods”, Optics and Lasers in Engineering, vol. 42, no. 2, pp. 179-192, 2004.
[20] E. Hu and H. Fang, “Surface Profile Inspection of A Moving Object by Using Dual-Frequency Fourier Transform Profilometry”, Optik, vol. 122, pp. 1245-1248, 2011.
[21] Z. W. Li, Y. S. Shi, C. J. Wang, D. H. Qin and K. Huang, “Complex Object 3D Measurement Based on Phase-Shifting and A Neural Network”, Optics Communications, vol. 282, no. 14, pp. 2699-2796, 2009.
[22] E. Hu, Y. He and W. Wu, “Further Study of The Phase-Recovering Algorithm for Saturated Fringe Patterns with A Larger Saturation Coefficient in The Projection Grating Phase-Shifting Profilometry”, Optik, vol. 121, no. 14, pp. 1290-1294, 2010.
[23] S. Gai and F. Da, “A Novel Phase-Shifting Method Based on Strip Marker”, Optics and Lasers in Engineering, vol. 48, pp. 205-211, 2010.
[24] L. C. Chen and L. H. Tsai, “Dual Phase-Shifting Moire Projection with Tunable High Contrast Fringes for Three-Dimensional Microscopic Surface Profilometry”, Physics Procedia, vol. 19, pp. 67-75, 2011.
[25] S. Ma, C. Quan, R. Zhu and C. Tay, “Investigation of Phase Error Correction for Digital Sinusoidal Phase-Shifting Fringe Projection Profilometry”, Optics and Lasers in Engineering, vol. 50, no. 8, pp. 1107-1118, 2012.
[26] P. S. Huang, Q. Hu, F. Jin and F. P. Chiang, “Color-Encoded Digital Fringe Projection Technique for High-Speed Three-Dimensional Surface Contouring”, Optical Engineering, vol. 38, no. 6, pp. 1065-1071, 1999.
[27] C. Quan, W. Chen and C. Tay, “Phase-Retrieval Techniques in Fringe-Projection Profilometry”, Optics and Laser in Engineering, vol. 48, no. 2, pp. 235-243, 2010.
[28] 馮勝凱,「應用光學三維量測系統於覆晶錫鉛凸塊高度量測」,私立元智大學工業工程與管理研究所碩士論文,2004。
[29] H. N. Yen, D. M. Tsai and J. Y. Yang, “Full-Field 3-D Measurement of Solder Pastes Using LCD-Based Phase Shifting Techniques”, IEEE Transactions on Electronics Packaging Manufacturing, vol. 29, no. 1, pp. 50-57, 2006.
[30] K. Jambunathan, L. S. Wang, B. N. Dobbins and S. P. He, “Semi-Automatic Phase Shift Calibration Using Digital Speckle Pattern Interferometry”, Optical and Lasers Technology, vol. 27, no.3, pp. 145-151, 1995.
[31] F. Wu, H. Zhang, M. J. Lalor and D. R. Burton, “A Novel Design for Fiber Optic Interferometric Fringe Projection Phase-Shifting 3-D Profilometry”, Optics Communications, vol. 187, pp. 347-357, 2001.
[32] T. W. Hui and G. K. H. Pang, “3-D Measurement of Solder Paste Using Two-Step Phase Shift Profilometry”, IEEE Transactions on Electronics Packaging Manufacturing, vol. 31, no. 4, pp. 306-315, 2008.
[33] D. Malacara, “Optical Shop Testing, Second Edition”, John Wiley &
Sons. Inc., New York, 1992.
[34] D. C. Ghiglia and M. D. Pritt, “Two-Dimensional Phase Unwrapping: Theory, Algorithms and software”, Wiley, & Sons. Inc., New York, 1998.
[35] 張智強,「適應性光學之系統鑑別」,國立中央大學機械工程研究所碩士論文,2004。
[36] H. N. Yen, D. M. Tsai and S. K. Feng, “Full-Field 3-D Flip-Chip Solder Bumps Measurement Using DLP-Based Phase Shifting Technique”, IEEE Transactions on Advanced Packaging, vol. 31, no. 4, 2008.
[37] L. J. Hornbeck, “Spatial Light Modulator and Method”, United States Patent, patent number: 4,662,746, May 5, 1987.
[38] D. M. Monk and R. O. Gale, “The Digital Micromirror Device for Projection Display”, Microelectronic Engineering, vol. 27, pp. 489-493, 1995.
[39] 李顯宏,「Matlab 7.x 介面開發與編譯技巧」,文魁資訊股份有限公司,台灣台北,2005。
[40] 陳耀茂,「田口實驗計劃法」,滄海書局,台灣台中,1997。
[41] 鄭燕琴,「田口品質工程技術理論與實務」,中華民國品質管制學會,台灣台北,1991。
[42] 蘇朝墩,「品質工程」,中華民國品質學會,台灣台北,2002。
[43] S. H. Park and J. Antony, “Robust Design for Quality Engineering and Six Sigma”, World Scientific, Singapore, 2008.
[44] P. J. Ross, “Taguchi Techniques for Quality Engineering”, McGraw-Hill, New York, 1996.
[45] 李輝煌,「田口方法 品質設計的原理與實務 第四版」,高立圖書有限公司,台灣台北,2011。
[46] 李永昌,「整合田口法與類神經網路於射出成型製程之建構與分析」,國立台灣科技大學工程技術研究所碩士論文,2002。
[47] C. F. J. Kuo, T. L. Su, P. R. Jhang, C. Y. Huang and C. H. Chiu, “Using the Taguchi Method and Grey Relational Analysis to Optimize the Flat-Plate Collector Process with Multiple Quality Characteristics in Solar Energy Collector Manufacturing”, Energy, vol. 36, no. 5, pp. 3554-3562, 2011.
[48] 蘇朝墩,「產品穩健設計」,中華民國品質學會,台灣台北,2000。
[49] 鍾國亮,「影像處理與電腦視覺」,東華書局,台灣台北,2008。
[50] R. C. Gonzalez and R. E. Woods, “Digital Image Processing, 3rd edition”,
Prentice-Hall, New York, 2008.
[51] S. E. Umbaugh. “Computer Imaging: Digital Image Analysis and Processing”, CRC Press, Boca Raton, Florida, 2005.
[52] A. K. Asundi and W. Zhou, “Unified Calibration Technique and Its Applications in Optical Triangular Profilometry”, Applied Optics, vol. 38, no. 16, pp. 3556-3561, 1999.
[53] Y. R. Shiau and B.C. Jiang, “Determine a Vision System’s 3D Coordinate Measurement Capability Using Taguchi Methods”, International Journal of Production Research, vol. 29, no. 6, pp. 1101-1122, 1991.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top