跳到主要內容

臺灣博碩士論文加值系統

(44.211.84.185) 您好!臺灣時間:2023/05/30 05:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:雅迪克
研究生(外文):Adityo Prabowo
論文名稱:Structure and Physical Properties of Organoclay/Epoxy Nanocomposite
論文名稱(外文):Structure and Physical Properties of Organoclay/Epoxy Nanocomposite
指導教授:洪伯達
指導教授(外文):Po-Da Hong
口試委員:洪伯達
口試委員(外文):Po-Da Hong
口試日期:2012-01-10
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:材料科學與工程系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:50
中文關鍵詞:Epoxy resin DGEBAnanohybridglass transition temperatureWFL equation.
外文關鍵詞:Epoxy resin DGEBAnanohybridglass transition temperatureWFL equation.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:186
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
Nanocomposite is the material that very intense to investigate today, especially epoxy resin DGEBA as polymer matrix. Epoxy resin is very popular polymer as based material in industry and engineering field such for coatings, insulated of electronics circuit, aerospace industry, etc. However, the researchers intensively explored the nanocomposite especially since Toyota Research Group has done research about the nylon-6/montmorillonite system.
The combination of mica platelet and Ag nanoparticle is used as filler in this nanocomposite system, and therefore it is known as nanohybrid which is applied in different content to consider its effect to epoxy resin DGEBA properties. The three different content of nanohybrid was proposed to be identified there are 0 wt%, 0.3 wt%, 0.7 wt%, and 1.0 wt% of nanohybrid.
The fine dispersion of nanohybrid actually induced the alteration of epoxy resin mechanical properties. The structure of modified epoxy resin is denser than pristine epoxy resin and it increased the hardness properties and tensile strength properties of epoxy resin. However, the frequency and temperature also affected of the epoxy resin thermomechanical properties alteration which the glass transition temperature (Tg) of nanocomposite increased with longer relaxation time. The polymer chains mobility also enhanced related shift factor result of WFL equation with itself motion related its ΔCp.
Nanocomposite is the material that very intense to investigate today, especially epoxy resin DGEBA as polymer matrix. Epoxy resin is very popular polymer as based material in industry and engineering field such for coatings, insulated of electronics circuit, aerospace industry, etc. However, the researchers intensively explored the nanocomposite especially since Toyota Research Group has done research about the nylon-6/montmorillonite system.
The combination of mica platelet and Ag nanoparticle is used as filler in this nanocomposite system, and therefore it is known as nanohybrid which is applied in different content to consider its effect to epoxy resin DGEBA properties. The three different content of nanohybrid was proposed to be identified there are 0 wt%, 0.3 wt%, 0.7 wt%, and 1.0 wt% of nanohybrid.
The fine dispersion of nanohybrid actually induced the alteration of epoxy resin mechanical properties. The structure of modified epoxy resin is denser than pristine epoxy resin and it increased the hardness properties and tensile strength properties of epoxy resin. However, the frequency and temperature also affected of the epoxy resin thermomechanical properties alteration which the glass transition temperature (Tg) of nanocomposite increased with longer relaxation time. The polymer chains mobility also enhanced related shift factor result of WFL equation with itself motion related its ΔCp.
CHAPTER PAGE
ACKNOWLEDGEMENT i
ABSTRACT ii
TABLE OF CONTENTS iii
LIST OF TABLES v
LIST OF FIGURES vi

CHAPTER 1. INTRODUCTION 1
1.1 Research Background 1
1.2 Research Objectives 2
1.3 Problem Limitation 2
1.4 Research Advantage 2
1.5 Writing Systematic 2

CHAPTER 2. LITERATURE REVIEW 3
2.1 Epoxy Resin 3
2.2 Organoclay 3
2.2.1 Organoclay Structure 4
2.2.2 Organoclay Structure in Polymer Matrix 6
2.2.3 Nanohybrid Structure 7
2.3 Polymer/Clay Nanocomposite Preparation 8
2.3.1 Sol-gel Technology 8
2.3.2 Intercalation of Polymer or Pre-polymer from Solution 8
2.3.3 In-situ Intercalative Polymerization 9
2.3.4 Melt Intercalation 9

CHAPTER 3. EXPERIMENTAL METHOD 11
3.1 Experimental Flow Chart 11
3.2 Experimental Procedure 12
3.2.1 Materials 12
3.2.2 Calculation Method 13
3.2.3 Steps of Experimental 13
3.3 Characterization 14
3.3.1 Scanning Electron Microscopy 14
3.3.2 Dynamical Mechanical Analyzer 14
3.3.3 X-Ray Diffraction 14
3.3.4 Differential Scanning Calorimetric 15
3.3.5 Thermogravimetric Analysis 15
3.3.6 Hardness Examination 15
3.3.7 Tensile Examination 15
a
CHAPTER 4. RESULTS AND DISSCUSION 16
4.1 Structure of AgNPs/Mica Epoxy Nanocomposite 16
4.2 Mechanical Properties of AgNPs/Mica Epoxy Nanocomposite 19
4.3 Thermal Properties of AgNPs/Mica Epoxy Nanocomposite 22
4.4 Thermomechanical Properties of AgNPs/Mica Epoxy Nanocomposite 25
4.5 Time-Temperature Superposition 29
4.6 The Glass Transition Dynamics Analysis by CRR Theory 32

CHAPTER 5. CONCLUSION 35

REFERENCES 36
[1] Callister Jr., William D. Material Science and Engineering: An Introduction. 2007, A John Wiley and Sons, Inc. New York.
[2] Alexandre, M.; Dubois, P. Mater. Sci. Eng. 2000, 28, 1-63.
[3] Vaia, R. A.; Ishii, H.; Giannelis, E. P. Chem. Mater. 1993, 5, 1694-1696.
[4] Choi, Y. S.; Choi, M. H.; Wang, K. H.; Kim, S. O.; Kim, Y. K.; Chung, I. J. Macromolecules 2001, 34, 8978-8985.
[5] Park, J. H.; Jana, S. C. Macromolecules 2003, 36, 2758-2768.
[6] Triantafyllidis, K. S.; LeBaron, P. C.; Park, I.; Pinnavaia, T. J. Chem. Mater. 2006, 18, 4393-4398.
[7] Bharadwaj, R. K. Macromolecules 2001, 34, 9189-9192.
[8] Bourbigot, S.; Gilman, J. W.; Wilkie, C. A. Polym. Degrad. Stab. 2004, 84, 483-492.
[9] Becker, O.; Varley, R.; Simon, G. Polymer 2002, 43, 4365-4373.
[10] Wang, Z.; Pinnavaia, T. J. Chem. Mater. 1998, 10, 1820-1826.
[11] Wang, Z.; Pinnavaia, T. J. Chem. Mater. 1998, 10, 3769-3771.
[12] Kojima, Y.; Usuki, A.; Kawasumi, M.; Okada, O.; Fukushima, Y.; Kuruachi, T.; Kamaigaito, O. J. Mater. Res. 1993, 8, 1185.
[13] Kojima, Y.; Usuki, A.; Kawasumi, M.; Okada, A.; Kuruachi, T.; Kamaigaito, O. J. Polym. Sci. Part A: Polym. Chem. 1993, 31, 983.
[14] May, C. A. Epoxy resins, chemistry and technology, 2nd Ed. 1988, Marcel Dekker, New York.
[15] Lin, J. J.; Cheng, I. J.; Chu, C. C. Polymer Journal 2003, 35, 411-416.
[16] Chou, C. C.; Chang, Y. C.; Chiang, M. L.; Lin J. J. Macromolecules 2004, 37, 473-477.
[17] Okada, A.; Usuki A. Macromol. Mater. Eng. 2006, 291, 1449–1476.
[18] Ray, S. S.; Okamoto, M. Prog. Polym. Sci. 2003, 28, 1539–1641.
[19] Chiu, C. W.; Hong, P. D.; Lin, J. J. Langmuir 2011, 27, 11690–11696.
[20] Dusek, K. Epoxy resins and composites. New York: Springer-Verlag; 1985.
[21] Chan, Y. N.; Juang, T. Y.; Liao, Y. L.; Dai, S. A.; Lin J. J. Polymer 2008, 49, 4796–4801.
[22] Huang, H. Y.; Chen, W. F.; Kuo, P. L. J. Phys. Chem. B 2005, 109, 24288.
[23] Huang, S.; Dai, L.; Mau, A. W. H. J. Phys. Chem. B 1999, 103, 4223.
[24] Alexandre, M.; Dubois, P. Mater. Sci. Eng. 2000, 28, 1.
[25] Beyer, G. Plas. Add. Comp. 2002, 4(10), 22–27.
[26] McNally, T.; Murphy, W. R.; Lew, C. Y.; Turner, R. J.; Brennan, G. P. Polymer 2003, 44, 2761 2772.
[27] Solomon, M. J.; Almusallam, A. S.; Seefeldt, K. F.; Somwangthanaroj, A.; Varadan, P. Macromolecules 2001, 34, 1864–1872.
[28] Zanetti, M.; Lomakin, S.; Camino, G.; Macrom. Mater. Eng. 2000, 279, 1-9.
[29] Giannelis, E. P.; Krishnamoorti, R.; Manias, E. Adv. Polym. Sci. 1999, 118, 108-147.
[30] Fischer, H. Mater. Sci. Eng. C 2003, 23, 763–772.
[31] Dixon, J. B. Appl. Clay. Sci 1991, 5, 489–503.
[32] Manias, E.; Touny, A.; Wu, L.; Strawhecker, K.; Lu, B.; Chung, T. C. Chem. Mater. 2001, 13, 3516–3523.
[33] Kornmann, X.; Lindberg, H.; Berglund, L. A. Polymer 2001, 42, 1303–1310.
[34] Ray, S. S.; Bousima, M. Prog. Mater. Sci. 2005, 50, 962–1079.
[35] Dennis, H. R.; Hunter, D. L.; Chang, D.; Kim, S.; White, J. L.; Cho, J. W.; Paul D. R. Polymer 2001, 42, 9513 -9522.
[36] Paul, D. R.; Robeson, L. M. Polymer 2008, 49, 3187.
[37] Krishnamoorti, R.; Giannelis, E. P. Macromolecules 1997, 30, 4097–4102.
[38] Vaia, R. A.; Wagner, H. D. Material Today 2004, 7, 32–37.
[39] Cai, L. F.; Lin, Z. Y.; Qian, H. eXPRESS Polymer Letters 2011, 4, 397–403.
[40] Khan, A. N. Characterization of the Structure, Crystallization Kinetics and Thermomechanical Properties of Polymer/Clay Nanocomposites 2009, NTUST, Taipei-Taiwan.
[41] Ivankovic, M.; Brnardic, I.; Ivankovic, H.; Mencer, H. J. J. App. Polym. Sci 2006, 99, 550-557.
[42] Cullity, B. D.; Stock, S. R. Elements of X-Ray Diffraction. 2001. Pearson Education International. New Jersey.
[43] Lin, J. J.; Shiu, C. R.; Chu, C. C.; Kwan, C. C. Polymer Journal 2005, 37, 1-7.
[44] Liu, Y. L.; Wei, W. L.; Hsu, K.Y.; Ho, W.H. Thermochimica Acta 2004, 412, 139–147.
[45] Bruma, M.; Schulz, B.; Kopnick, T.; Dietel, R.; Stiller, B.; Mercer, F.; Reddy F. N. High Perform. Polym 1998, 10, 207–215.
[46] Park, S. J.; Kim, H. C.; Lee, H. I.; Suh, D. H. Macromolecules 2001, 34, 7573–7575.
[47] Li, X. G.; Huang, M. R. J. App. Polym. Sci. 1991, 11, 1923–1931.
[48] Um, M. K.; Daniel, I. M.; Hwang, B. S. Comp. Sci. Tech. 2002, 62, 29–40.
[49] Puglia, D.; Valentini, L.; Kenny, J. M. J. Appl. Polym. Sci. 2003, 88, 452.
[50] Opfermann, J.; Kaisersberger, E. Thermochim. Acta 1992, 203, 167.
[51] Wiley, J. Thermal Analysis of Polymers: Fundamentals and Applications. 2009. Hoboken, N.J.
[52] Lu, H. B.; Nutt, S. Macromolecules 2003, 36, 4010–4016.
[53] Dai, X. H.; Xu, J.; Guo, X. L.; Lu, Y. L.; Shen, D. Y.; Zhao, N.; Luo, X. D.; Zhang, X. L. Macromolecules 2004, 37, 5615–5623.
[54] Li, Y. Q.; Ishida, H. Macromolecules 2005, 38, 6513–6519.
[55] Tsui, O. K. C.; Russell, T. P.; Hawker, C. J. Macromolecules 2001, 34, 5535.
[56] Danch, A.; Osoba, W. J. Therm . Anal. Calorim. 2004, 78, 923–932.
[57] Vyazovkin, S.; Dranca, I. J. Phys. Chem. B 2004, 108, 11981–11987.
[58] Chen, K.; Wilkie, C. A.; Vyazovkin, S. J. Phys. Chem. B 2007, 111, 12685–12692.
[59] Menard.; Kevin, P. Dynamic Mechanical Analysis: A Practical Introduction. 1999. Florida-USA.
[60]Bohning, M.; Goering, H.; Fritz, A.; Brzezinka, K. W.; Turky, G.; Schonhals, A.; Schartel, B. Macromolecules 2005, 38, 2764.
[61] Williams, M. L.; Landel, R. F.; Ferry, J. D. J. Am. Chern. Soc. 1955, 77, 3701.
[62] Adam, G.; Gibbs, J. H. J. Chem. Phys. 1965, 43, 139.
[63] Narayanan, R. A.; Thiyagarajan, P.; Lewis, S.; Bansal, A.; Schadler, L. S.; Lurio, L. B. Phys. Rev. Lett. 2006, 97, 075505.
[64] Donth, E. J. Polym. Sci. Part B: Polym. Phys. 1996, 34, 2881.
[65] Grigoras, C. V.; Grigoras, A. G. J. Therm. Anal. Cal 2011, 103, 661-668.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top