跳到主要內容

臺灣博碩士論文加值系統

(100.28.0.143) 您好!臺灣時間:2024/07/13 16:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林兼民
研究生(外文):Jian-min Lin
論文名稱:弱酸型離子交換聚丙烯腈奈米纖維薄膜的製備與性質
論文名稱(外文):Preparation and properties of a weak acid ion exchange polyacrylonitrile (PAN) nanofiber membrane
指導教授:邱顯堂
指導教授(外文):Hsien-Tang Chiu
口試委員:邱顯堂
口試委員(外文):Hsien-Tang Chiu
口試日期:2012-05-25
學位類別:博士
校院名稱:國立臺灣科技大學
系所名稱:材料科學與工程系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:118
中文關鍵詞:聚丙烯腈溶菌酶雞蛋白靜電紡絲奈米纖維鹼化水解離子交換蛋白質吸附純化
外文關鍵詞:polyacrylonitrile (PAN)lysozymechicken egg whiteelectrospinningnanofiberalkaline hydrolysision exchangeprotein adsorptionpurification
相關次數:
  • 被引用被引用:2
  • 點閱點閱:445
  • 評分評分:
  • 下載下載:101
  • 收藏至我的研究室書目清單書目收藏:0
離子交換層析為一般分離純化常用的系統,但樹脂內之微孔洞易被阻塞而降低純化效果,使再生回復率下降,且樹脂本身易受壓力擠壓而破損。為決解上述問題,本研究採用薄膜分離的處理概念,結合靜電紡絲技術及快速鹼化水解程序,使得奈米纖維表面羧酸化,成功製備具高比表面積、高孔隙率的弱酸型離子交換奈米纖維膜。
此複合膜材是以聚酯(polyethyleneterephthalate;PET) 紡粘不織布為中間基材,上下兩層為聚丙烯腈(polyacrylonitrile;PAN)奈米纖維膜,經由熱壓貼合成PAN-PET-PAN (AEA)的不對稱膜材結構,再利用氫氧化鈉(NaOH)可快速鹼化水解PAN奈米纖維表面之-C≡N鍵,使其變成-COOH官能基,即可製備出弱酸型離子交換奈米纖維膜(AEA-COOH)。掃描式電子顯微鏡(SEM)觀察結果顯示靜電紡絲PAN奈米纖維直徑分佈均勻,平均直徑落於200-250nm之間,經過熱壓程序後,膜材3D網狀結構變得更為密實,孔洞分佈也較為集中。
靜電紡絲PAN奈米纖維之有機溶劑(DMAc)殘留驗證分析結果顯示在蛋白質實際純化應用上,並不會發生伴随有機溶劑釋放及殘留的問題。同時也進行不同鹼化水解條件試驗,如溫度(25-85℃)、濃度(1-3N)、時間(0-40min),以瞭解PAN奈米纖維表面之-COOH官能基密度變化。
為了解AEA-COOH膜材特性,本研究以市售品SartobindR 離子交換膜材為比較標準,實驗結果顯示AEA-COOH膜材的基重與膜厚分別約為SartobindR C膜材的33%與64%,比表面積(6.1768 m2/g)是SartobindR C膜材的7倍,且其孔隙率(84.4%)也高於SartobindR C膜材(73.4%),熱裂解溫度(320℃)更遠高於SartobindR C的115℃,表示其熱穩定性高。
最後,將其裝置在Millipore的stirred cell攪拌式反應器中,以連續操作的方式自雞蛋白中直接純化溶菌酵素。實驗結果顯示AEA-COOH膜材在pH 9環境下,可以吸附105 mg左右的溶菌酶蛋白質(lysozyme protein),約是SartobindR C膜及SartobindR S膜的2倍。利用AEA-COOH離子交換型奈米纖維膜於雞蛋白 (chicken egg white) 中直接純化溶菌酶蛋白質,其蛋白質回收率雖只有22.3%,但這些被純化出來的蛋白質活性回收率卻高達80.5%,整體純化效率被提高73.6倍。將純化後所獲得溶液,利用十二烷基硫酸鈉聚丙烯醯胺膠體電泳系統(sodium dodecyl sulfate - polyacrylamide gel electrophoresis ; SDS-PAGE )來確認純化產物,本研究證實利用AEA-COOH膜可從雞蛋白中分離純化出高純度的溶菌酶蛋白質。
因此藉由進行比較不同離子交換膜材對蛋白質溶菌酶吸附濃度與吸附速率試驗,證實本研究利用以PAN奈米纖維所組成的弱酸型離子交換膜材會比市售品SartobindR 膜材具有更輕、更薄、更快的吸附效率與更高的吸附濃度,可以提升整體吸附分離純化的效率。
Ion exchange membranes are commonly used in separation and purification systems. However, micropore blockage within its resin structure can easily lead to a reduction in the effectiveness of purification, with regeneration response rate dropping as a result. The resin itself is vulnerable to extrusion pressure and damage. To tackle this problem, we adopted the concept of membrane separation. By combining electrospinning techniques with rapid alkaline hydrolysis, we successfully prepared a weak acid ion exchange nanofiber membrane.
The membranous material was made of nonwoven polyethyleneterephthalate (PET) spunbond fabric for the intermediate substrate. The upper and lower layers were made of polyacrylonitrile (PAN) nanofiber membranes. Using a heat pressing technique, the PAN-PET-PAN (AEA) layers were combined into an asymmetrical membrane structure. NaOH was applied to quickly alkaline hydrolyze -C ≡ N bond to the PAN nanofiber surface, converting it into -COOH carboxyl group. In this manner, we succeeded in preparing a weak acid ion exchange nanofiber membrane (AEA-COOH). SEM observation showed that the diameter of the electrospun PAN nanofiber distribution was uniform, falling between 200-250nm. After the heat pressing, the 3D reticular structure of the membrane increased in density and the pore distribution became more concentrated.
Organic solvent residue analysis proves no significant dimethylacetamide release from electrospun polyacrylonitrile nanofibers. Various conditions in the alkaline hydrolysis process, such as temperature (25-85 ℃), concentration (1-3N), and time (0-40min), were simultaneously tested in order to get a better understanding of the density of the PAN nanofiber surface -COOH group.
To understand the characteristics of the AEA-COOH membrane, we used the commercially available product SartobindR ion exchange membrane as the standard of comparison. Results of the experiments showed that the base weight and thickness AEA-COOH were 33% and 64%, relative to SartobindR C membrane. The surface area (6.1768 m2/g) was 7 times larger, and its pore rate (84.4%) was higher than SartobindR C membrane (73.4%). AEA-COOH membrane pyrolysis temperature (320 ℃) was far higher than that of SartobindR C of 115 ℃, indicating high thermal stability.
Finally, we use commercial SartobindR ion-exchange membranes as the comparison standard. Results show that AEA-COOH membranes in a pH 9 environment can adsorb approximately 105 mg of lysozyme, which is twice that of SartobindR C and SartobindR S membranes. The lysozyme was directly purified from the chicken egg white using Millipore stirred cell reactor equipped with AEA-COOH membranes. Despite a protein recovery of only 22.3 %, the purified lysozyme had an activity recovery as high as 80.5 % with a 73.6-fold purification. SDS-PAGE (sodium dodecyl sulfate - polyacrylamide gel electrophoresis) confirms the purified lysozyme product. This study thereby verified that lysozyme protein can be isolated and purified directly from chicken egg whites using AEA-COOH membranes.
Comparisons between the lysozyme adsorption density and rates of different ion exchange membranes, confirmed that PAN nanofiber, formed by weak acid ion exchange membrane, was lighter, thinner, faster, and possessed higher adsorption efficiency and adsorption concentration, than SartobindR membrane. This PAN nanofiber could enhance the overall adsorption efficiency of purification processes.
中文摘要 I
ABSTRACT IV
誌謝 VII
目錄 VIII
表目錄 XI
圖目錄 XII
第一章 緒論 1
1-1研究背景 1
1-2研究目的 5
第二章 文獻回顧 6
2-1奈米科技 6
2-2奈米纖維 10
2-3奈米纖維之製備方法 16
2-4靜電紡絲技術 20
2-5靜電紡絲設備與製程參數關係 25
2-6靜電紡絲溶液 27
2-7分離純化 32
2-8離子交換法 34
2-9離子交換層析法 36
2-10離子交換樹脂特性 39
2-11離子交換纖維膜材之應用 40
2-12溶菌酶 43
2-13 雞蛋白 46
2-14甲苯胺藍 48
第三章 實驗流程與製備方法 49
3-1材料 49
3-2實驗儀器 50
3-3製備流程 51
3-3-1静電紡絲PAN奈米纖維膜材製備 51
3-3-2 PAN-PET-PAN(AEA)複合膜材製備 52
3-3-3羧酸型離子交換奈米纖維膜製備 52
3-4膜厚試驗 53
3-5基重試驗 53
3-6熱穩定性(TGA)試驗 53
3-7孔徑分析(PMI)試驗 53
3-8掃描式電子顯微鏡(SEM)試驗 54
3-9孔隙率試驗 54
3-10 比表面積(BET)試驗 55
3-11 廣角X-ray試驗 55
3-12 電紡奈米纖維膜之有機溶劑殘留測試 56
3-13 吸附性質 57
3-13-1甲苯胺藍染劑的配製 57
3-13-2甲苯胺藍檢量線溶液的配製 57
3-13-3甲苯胺藍檢量線試驗 57
3-13-4 PAN膜材表面羧基定量試驗 59
3-13-5 蛋白質批次吸附試驗 59
3-13-6 總量蛋白質檢測 60
3-13-7 溶菌酶活性檢測 60
3-13-8 連續式膜純化系統試驗 61
3-14 十二烷基硫酸鈉聚丙烯醯胺膠體(SDS-PAGE)電泳試驗 63
3-14-1 SDS-PAGE試劑配製 63
3-14-2 SDS-PAGE電泳分析 63
第四章 實驗結果與討論 65
4-1聚丙烯腈奈米纖維膜性質探討 65
4-2 PAN-PET-PAN(AEA)複合膜材羧酸化性質 68
4-2-1 NaOH濃度影響 68
4-2-2 鹼化水解溫度影響 69
4-2-3 鹼化水解時間影響 70
4-3 離子交換AEA複合膜材性質探討 72
4-3-1 AEA複合膜材結構型態 72
4-3-2 AEA複合膜材孔洞性質 73
4-3-3 PAN-COOH膜層數影響 75
4-3-4 AEA複合膜材物性 76
4-3-5 AEA複合膜材熱穩定性 77
4-3-6 AEA複合膜材廣角X光繞射分析 78
4-3-7 AEA有機溶劑殘留測試 79
4-4 AEA-COOH對溶菌酶吸附性質分析 81
4-4-1吸附時間之影響 81
4-4-2 pH值之影響 82
4-5離子交換型奈米纖維膜從雞蛋白中純化溶菌酶性質探討 84
4-5-1 不同pH值對純化雞蛋白中溶菌酶之影響 84
4-5-2掃流式過濾器純化溶菌酶分析 85
4-5-3 SDS-PAGE電泳分析 87
第五章 結論 89
第六章 參考文獻 93
第七章 未來研究建議 101
附錄作者簡介與著作 102
An, H., Shin, C., Chase, G.G., ” Ion exchanger using electrospun polystyrene nanofibers,” Journal of Membrane Science, Vol.283, pp.84-87 (2006)
Aune, K., Tanford, C.,” Thermodynamics of the denturation of lysozyme by guanidine hydrochloride: I. Dependence on pH at 25 degrees,” Biochemistry, Vol.8, pp.4579-4585 (1969)
Awade, A.C., Efstathiou, T., ” Comparison of three liquid chromatographic methods of egg-white protein analysis,” Journal of Chromatography B, Vol.723, pp.69-74 (1999)
Barhate, R.S., Ramakrishna, S., “Nanofiber filtering media: Filtration problems and solutions from tiny materials,” Journal of Membrane Science, Vol.296, pp.1-8 (2007)
Blake, C.C., Koenig, D.F., Mair, G.A., North, A.C., Phillips, D.C., Sarma, V.R.,Canfield, R.E., "Chapter 1: Introduction", in Lysozyme, Osserman, E. F., Canfield, R. E., Beychok, S. (eds), Academic Press (1974).
Cao, J., Zhang, N., “ Determination of N,N-Dimethylacetamide in water by ultraviolet spectrophotometry,” Modern Instruments, Vol.3, pp.63-67 (2008)
Chang, Z.J., Zhao, X., Zhang, Q.H., Chen, D.J., ” Nanofibre-assisted alignment of carbon nanotubes in macroscopic polymer matrix via a scaffold-based method,” eXPRESS Polymer Letters, Vol.4, pp.47-53 (2010)
Cunningham, F.E., Proctor, V.A., Goetsch, S.J., “Egg-white lysozyme as a food preservative: an overview,” World's Poultry Science Journal, Vol.47, pp.141-163 (1991)
Czajka, R., “Development of medical textile market,” Fibers &; Textiles in eastern Europe, Vol.13, pp.13-15 (2005)
Dai, Z.W., Nie, F.Q., Xu, Z.K.,” Acrylonitrile-based copolymer membranes containing reactive groups: Fabrication dual-layer biomemetic membranes by the immobilization of biomacromolecules,” Journal of Membrane Science, Vol.264, pp.20-26 (2005)
Deitzel, J.M., Kleinmeyer, J.D., Hirvonen, J.K., Beck Tan N.C., “Controlled deposition of electrospun poly(ethylene oxide) fibers ,” Polymer, Vol.42, pp.8163-8170( 2001)
Demir, M.M., “Investigation on glassy skin formation of porous polystyrene fibers electrospun from DMF,” eXPRESS Polymer Letters, Vol.4, pp.2-8 (2010)
Dhanalakshmi, M., Jog, J.P., “Preparation and characterization of electrospun fibers of Nylon 11,” eXPRESS Polymer Letters, Vol.2, pp.540-545 (2008)
Ding, Z.J., Qi, L., Ye, J.Z., “Research on preparation of sheath-core bicomponent composite ion exchange fibers and absorption properties to metal ion,” Macromolecular Research, Vol.16, pp.21-30 (2008)
Dominguez, L., Benak, K.R., Economy, J., “Design of high efficiency polymeric cation exchange fibers,” Polymers for Advanced Technologies, Vol.12, pp.197-205 (2001)
Fong, H., Chun, I., Reneker, D.H., “Beaded nanofibers formed during electrospinning,” Polymer, Vol.40, pp.4585-4592(1999)
Salem, D.R., Structure Formation in Polymeric Fibers, Hanser Gardner Publications, U.S.A., pp.225-246(2001)
Frenot, A., Chronakis, I.S., “Polymer nanofibers assembled by electrospinning,” Current Opinion in Colloid and Interface Science, Vol.8, pp.64-75 (2003)
Greenleaf, J.E., Lin, J.C., Sengupta, A.K., “Two novel applications of ion exchange fibers: Arsenic removal and chemical-free softening of hard water,” Environmental Progress, Vol.25, pp.300-311 (2006)
Greenleaf, J.E., Sengupta, A.K., “Environmentally benign hardness removal using ion-exchange fibers and snowmelt,” Environmental Science &; Technology, Vol.40, pp.370-376 (2006)
Guceri, S., Gogotsi, Y.G., Kuznetsov, V., Nanoengineered Nanofibrous Materials, Kluwer Academic Publisher, U.S.A., pp.1-18(2004)
Hash, J.H., "Chapter 9: Lysozyme chalarposis", in Lysozyme, Osserman, E.F., Canfield, R.E., Beychok, S. (eds)., Academic Press (1974).
Heath, C., Belfort, G., “Immobilization of suspended mammalian cells: Analysis of hollow fiber and microcapsule bioreactors,” Advances in Biochemical Engineering / Biotechnology, Vol.34, pp.1-31(1987)
Hegde, R.R., Dahiya, A., Kamath, M.G., Nanofiber nonwovens, Department of Materials Science &; Engineering, The University of Tennessee, UK,(2005)
Heikklia, P., Harlin, A., “Electrospinning of polyacrylonitrile (PAN) solution: Effect of conductive additive and filler on the process,” eXPRESS Polymer Letters, Vol.3, pp.437-445 (2009)
Hu, S.G., Jou, C.H., Yang, M.C., “Protein adsorption, fibroblast activity and antibacterial properties of poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) grafted with chitosan and chitooligosaccharide after immobilized with hyaluronic acid,” Biomaterials, Vol.24, pp.2685–2693 (2003)
Huang, Z.M., Zhang, Y.Z., Kotaki, M., Ramakrishna, S., “A review on polymer nanofibers by electrospinning and their applications in nanocomposites,” Composites Science and Technology, Vol.63, pp.2223-2253 (2003)
Jayakumar, R., Prabaharan, M., Nair, S.V., Tamura, H., “Novel chitin and chitosan nanofibers in biomedical applications,” Biotechnology Advances, Vol.28, pp.142-150 (2010)
Kariduraganavar, M.Y., Nagarale, R.K., Kittur, A.A., Kulkarni, S.S., ” Ion-exchange membranes: preparative methods for electrodialysis and fuel cell applications,” Desalination, Vol.197, pp.225-246 (2006)
Koichi, K., Yoshito, I., Immobilization of DNA onto a polymer support and its potentiality as immunoadsorbent, Biotechnol. Bioeng., 51, 581-590, (1996)
Kumar, A., Gurian, P.L., Bucciarelli-Tieger, R.H., Mitchell-Blackwood, J., “Iron oxide - Coated fibrous sorbents for arsenic removal,” Journal/American Water Works Association, Vol.100, pp.151-164 (2008)
Kumbar, S.G., Nukavarapu, S.P., James, R., Hogan, M.V., Laurencin, C.T., “Recent patents on electrospun biomedical nanostructures: an overview,” Recent patents on biomedical engineering, Vol.1, pp.68-78(2008)
Larrondo, L., John Manley, R.ST., “Electrostatic fiber spinning from polymer melts. I.II.III. Experimental observations on fiber formation and properties,” Polymer Physics, Vol.19, pp.909-943(1981)
Lasanta, C., Roldan, A., Caro, I., Perez, L., Palacios, V., “Use of lysozyme for the prevention and treatment of heterolactic fermentation in the biological aging of sherry wines,” Food Control, Vol.21, pp.1442-1447 (2010)
Li, S.F., Chen, J.P., Wu, W.T., “Electrospun polyacrylonitrile nanofbrous membranes for lipase immobilization,” Journal of Molecular Catalysis B: Enc, Vol.47, pp.117-124 (2007)
Lin, W.C., Liu, T.Y., Yang, M.C., “Hemocompatibility of polyacrylonitrile dialysis membrane immobilized with chitosan and heparin conjugate,” Biomaterials, Vol.25, pp.1947-1957 (2004)
Lisbeth, G., Adrienne, C.T., Matt, T., “Polymeric Grafting of Acrylic Acid onto Poly(3-hydroxybutyrate-co-3-hydroxyvalerate): Surface Functionalization for Tissue Engineering Applications,” Biomacromolecules, Vol.6, pp.2197-2203( 2005)
Liu, H., Hsieh Y.L., “Ultrafine Fibrous Cellulose Membranes from Electrospinning of Cellulose Acetate,” Journal of Polymer Science Part B: Polymer Physics, Vol. 40, No. 18, pp. 2119-2129(2002)
Ma P X, Zhang R., “Synthetic nano-scale fibrous extracellular matrix,” Journal of Biomedical Materials Research, Vol.46, pp.60-72(1999)
Ma, Z., Lan, Z., Matsuura, T., Ramakrishna, S., “Electrospun polyethersulfone affinity membrane: Membrane preparation and performance evaluation,” Journal of Chromatography B, Vol.877, pp.3686-3694 (2009)
Ma, Z., Ramakrishna, S., “Electrospun regenerated cellulose nanofiber affinity membrane functionalized with protein A/G for IgG purification,” Journal of Membrane Science, Vol.319, pp.23-28 (2008)
Matsumoto, H., Wakamatsu ,Y., Minagawa, M., Tanioka, A., “Preparation of ion-exchange fiber fabrics by electrospray deposition,” Journal of Colloid and Interface Science, Vol.293, pp.143-150 (2006).
Nandana, B., Subhas, C.K., “Electrospinning: A fascinsting fiber fabrication technique,” Biotechnology Advances, Vol. 28, pp.325-347(2010)
Oh, N.W., Jegal, J., Lee, K.H., “Preparation and Characterization of Nanofiltration Composite Membranes Using Polyacrylonitrile (PAN). I. Preparation and Modification of PAN Supports,” Journal of Applied Polymer Science, Vol.80, pp.1854–1862 (2001)
Ondarcuhu ,T., Joachim, C., “Drawing a single nanofibre over hundreds of microns ,” Europhysics Letters, Vol.42, No.2, pp.15-20(1998)
Osserman, E.F., Canfield, R.E., Beychok, S. "Sections 3: biological 110 and clinical studies", in Lysozyme. Osserman, E.F., Canfield, R.E., Beychok, S. (eds). Academic Press (1974).
Park, S.A., Park, K., Yoon, H., Son, J.G., Min, T., Kim, G.H., “Apparatus for preparing electrospun nanofibers: designing an electrospinning process for nanofiber fabrication,” Polymer International, Vol.56, pp.1361-1366 (2007)
Reneker, D.H., Yarin, A.L., Fong, H., Koombhongse, S., “Bending instability of electrically charged liquid jets of polymer solutions in electrospinning,” Journal of Applied Physics, Vol.87, No.9, pp.4531-4547(2000)
Sasai, Y., Matsuzaki, N., Kondo, S.I., Kuzuya, M., “Introduction of carboxyl group onto polystyrene surface using plasma techniques,” Surface &; Coatings Technology, Vol.202, pp.5724-5727 (2008)
Saxena, A., Tripathi, B.P., Kumar, M., Shahi, V.K., “Membrane-based techniques for the separation and purification of proteins: An overview,” Advances in Colloid and Interface Science, Vol.145, pp.1-22(2009)
Seeram, R., Kazutoshi, F., Teo, W.E., Lim, T.C., Ma, Z., An introduction to electrospinning and nanofibers, World Scientific Publishing, Singapore (2005)
Shugar, D., “The measurement of lysozyme activity and the ultra-violet inactivation of lysozyme,” Biochimica et Biophysica Acta, Vol.8, pp.302-309 (1952)
Shunkevich, A.A., Akulich, Z.I., Mediak, G.V., Soldatov, V.S., “Acid-base properties of ion exchangers. III. Anion exchangers on the basis of polyacrylonitrile fiber,” Reactive &; Functional Polymers, Vol.63, pp.27-34 (2005)
Stanelle, R.D., Straut, C.M., Marcus, R.K., “Nylon-6 capillary-channeled polymer fibers as a stationary phase for the mixed-mode ion exchange/reversed-phase chromatography separation of proteins,” Journal of Chromatographic Science, Vol.45, pp.415-421 (2007)
Subbiah, T., Bhat, G.S., Tock, R.W., Parameswaran, S., Ramkumar, S.S., “Electrospinning of nanofibers,” Journal of Applied Polymer Science, Vol.96, pp.557-569 (2005)
Taylor, G.I., “Motion of axi-symmetric bodies in viscous fluids,” in Problems of Hydrodynamics and Continuum Mechanics, S.I.A.M. Publ., pp.718-724 (1969)
Teo, W.E., Ramakrishna, S., “A review on electrospinning design and nanofibre assemblies,” Nanotechnology, Vol.17, pp.89-106 (2006)
Tesema, Y., Raghavan, D., Stubbs, J., “Bone cell viability on collagen immobilized poly(3-hydroxybutrate-co-3-hydroxyvalerate) membrane : Effect of surface chemistry,” Journal of Applied Polymer, Vol.93, pp.2445-2453(2004)
Wakamatsu, Y., Matsumoto, H., Minagawa, M., Tanioka, A., “Effect of ion-exchange nanofiber fabrics on water splitting in bipolar membrane,” Journal of Colloid and Interface Science, Vol.300, pp.442-445 (2006)
Wang, T., Kumar, S., “Electrospinning of polyacrylonitrile nanofibers,” Journal of Applied Polymer Science, Vol.102, pp.1023-1029 (2006)
Wang, Z.G., Wan, L.S., Xu, Z.K., “Surface engineering of polyacrylonitrile - based asymmetric membranes towards biomedical applications: An overview,” Journal of Membrane Science, Vol.304, pp.8-23 (2007)
Whitesides, G.M., Grzybowski, B., “Self-Assembly at All Scales,” Science, Vol.295, pp.2418-2421(2002)
Wright, P.R., Muzzio, F.J., Glasser, B.J., “Batch uptake of lysozyme:effect of solution viscosity and mass transfer on adsorption,” Biotechnology Progress, Vol.14, pp.913-921 (1998)
Yang, M.C., Lin, W.C., “Surface modification and blood compatibility of polyacrylonitrile membrane with immobilized chitosan-heparin conjugate,” Journal of Polymer Research, Vol.9, pp.201-206 (2002)
Yoon K., Kim K., Wang X., Fang D., Hsiao B.S., Chu B., “High flux ultrafiltration membranes based on electrospun nanofiber PAN scaffolds and chitosan coating,” Polymer, Vol.47, pp.2434-2441 (2006)
Zong, X., Kim, K., Fang, D., “Structure and process relationship of electrospun bioabsorbable nanofiber membranes,” Polymer, Vol.43, No.16, pp.4403-4412 (2002)
吳大誠、杜仲良、高緒珊,奈米纖維,臺灣,五南圖書出版股份有限公司(2004)
宋瑜祥,「雞蛋白溶菌酶之製備與純化」,碩士論文,台灣大學農業化學研究所,台北(1996)
李建武、蕭能庚,余瑞元、陳麗蓉、陳雅蕙、陳來同、袁明秀,生物化學實驗原理和方法,藝軒圖書出版社,台北(1999)
管郁中,「以離子交換法去除污泥中重金屬之研究」,碩士論文,大同大學化工系,台北(2003)
趙永芳、黃健 ,生物化學技術原理及應用,科學出版社,北京(2008) 
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊