(3.235.41.241) 您好!臺灣時間:2021/04/21 13:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:趙啟良
研究生(外文):Chi-Liang Chao
論文名稱:以電漿氧化成長氧化鉭摻銅薄膜之雙極式電阻切換研究
論文名稱(外文):Study of Bipolar Resistive Switching in Copper-doped Tantalum Oxide Thin Films Prepared by Plasma Oxidation
指導教授:周賢鎧
指導教授(外文):Shyan-kay Jou
口試委員:周賢鎧
口試委員(外文):Shyan-kay Jou
口試日期:2012-06-25
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:材料科學與工程系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:88
中文關鍵詞:氧化鉭薄膜電漿氧化電阻式切換
外文關鍵詞:CopperTantalum oxideThin filmPlasma oxidationResistance switching
相關次數:
  • 被引用被引用:1
  • 點閱點閱:328
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:40
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用共濺鍍系統沉積出TaN(Cu)的混合薄膜,並使用電漿氧化的方式直接氧化下電極製作出中間電阻層,之後再沉積出TaN薄膜當作上電極,製備出TaN/Cu-TaOx/TaN(Cu)的MIM三層結構的元件。在電漿氧化部分,分別利用RF氧氣電漿以及微波電漿,利用兩種不同的電漿氧化方式製作中間電阻氧化層,由電性量測的結果可知上述兩種不同的製程皆有穩定的雙極式電阻切換性質,並且可以利用不同的限制電流去改變其高低電阻差值在10到100,此類現象可以間接證明導電燈絲存在於電阻薄膜內的證據。
在微波電漿的部分,元件於高電阻態時的低電壓區段為Schottky emission,高電壓區段則由Poole-Frenkle emission主導,低電阻態時則符合SCLC的傳導機制。而在RF氧氣電漿的部分,元件於高電阻態下則由SCLC主導,在低電阻態時則由Ohmic contact作為傳導機制。
經由成分以及微觀分析後發現,在兩種不同的氧化方式下會造成其中間電阻層中的氧化態成分不同,厚度上亦有所差異,此乃造成兩種氧化製程下的元件擁有不同的漏電流機制的主因。
A thin copper-doped tantalum oxide (Cu-TaOx) film was prepared by plasma oxidation of a copper-doped tantalum nitride (Cu-TaN), and its resistance switching behavior was studied. A Cu-TaN film was firstly deposited by co-sputtering as a bottom electrode, then the Cu-TaN film was oxidized in an oxygen-containing plasma to form an insulating layer (Cu-TaOx). At last, the TaN film was deposited on top of the insulating layer as the top electrode to form a MIM structure.
The insulating layer was fabricated by RF plasma oxidation and microwave plasma oxidation, respectively. Both of these two devices exhibited bipolar resistance switching when DC voltages were swept. And the resistance ratio of RHRS/RLRS measured at +0.3 V were above 10 to 100 using two different compliant currents. This phenomenon suggested that conducting filamentary paths may form inside the Cu-TaOx layer.
In the microwave plasma oxidation, the device showed Schottky emission in the low voltage region of HRS, and exhibited poole-frenkel emission in the high voltage region of HRS, whereas LRS followed SCLC mechanism.
In the contrast, when the insulating layer was formed by RF plasma oxidation, the device showed SCLC mechanism in HRS and Ohmic contact in LRS, respectively.
The insulating layers made by two different oxidization methods were examined by XPS, SEM and TEM. Different compositions and structures were revealed in the insulating layer, causing different conducting mechanism in the I-V analysis.
摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 IX
一. 前言 1
二. 文獻回顧 2
2.1記憶體簡介 2
2.1-1 鐵電式記憶體 2
2.1-2 相變化式記憶體 3
2.1-3 磁阻式記憶體 3
2.1-4 電阻式記憶體 4
2.2電阻轉換機構 7
2.2-1 導電燈絲機構 7
2.2-2 界面導電機構 9
2.2-3 離子遷徙機構 11
2.3漏電流電性傳導機制 13
2.3-1 蕭特基發射(Schottky Emission) 13
2.3-2歐姆接觸(Ohmic Contact) 14
2.3-3穿隧(Tunneling) 15
2.3-4普爾-法蘭克發射(Poole-Frenkel Emission) 16
2.3-5空間電荷限制傳導(Space-Charge Limited Current, SCLC) 17
2.4 氧化鉭電阻切換之文獻回顧 20
2.4-1 Ta2O5為電阻層之研究 20
2.4-2 TaOx為電阻層之研究 22
2.4-3高氧化勢電極與TaOx界面之研究 26
2.4-4 Ta2O5-TaO2-X為介電層之研究 28
實驗動機 30
三. 實驗步驟及方法 31
3.1實驗材料與藥品規格 31
3.2實驗步驟 32
3.2-1 基材清洗 32
3.2-2 元件製作 34
3.2-3實驗參數 35
3.3.實驗儀器與裝置 36
3.3-1磁控式共濺鍍系統 36
3.3-2微波電漿系統 37
3.3-3 RF氧氣電漿系統 38
3.4分析與鑑定儀器 39
分析儀器簡表 39
3.4-1 X光繞射儀( X-ray Driffractometer, XRD) 40
3.4-2半導體參數分析儀 41
3.4-3 X光光電子分析儀(X-ray Photoelectron Spectroscope, XPS) 42
四. 結果與討論 43
4.1元件成分特性分析-微波電漿氧化 43
4.1-1電極分析 43
4.1-2電阻層薄膜成分分析 45
4.1-3元件薄膜微觀結構分析 52
4.2元件電性量測與分析-微波電漿氧化 55
4.3元件成分特性分析- RF電漿氧化 65
4.3-1電阻層薄膜成分分析 65
4.3-2元件薄膜微觀結構分析 69
4.4元件電性量測與分析-RF電漿氧化 70
4.5 微波電漿氧化與RF電漿氧化之比較 76
五. 結論 77
六. 參考文獻 78
附錄 86



圖2-1. 電阻式記憶體MIM三明治結構 4
圖2-2. 電阻式記憶體結合積體電路
圖2-3. RRAM結合1T1R的矩陣排列 5
圖2-4.(a)單極性電阻切換示意圖(b)雙極性電阻式切換示意圖 6
圖2-5. 導電燈絲機構切換示意圖 8
圖2-6. Pt/NiOX/Pt系統於晶界形成金屬導電燈絲示意圖 8
圖2-7. Cr/TaOX/Al氧空缺燈絲示意圖 9
圖2-8. 界面導電機構 11
圖2-9. (a)銅燈絲形成示意圖,(b)SEM底下觀察到的銅燈絲 11
圖2-10. (a)Ag/GeSe/Pt元件中Ag離子遷移,(b)此機制中的I-V曲線 12
圖2-11. 蕭特基能障示意圖 14
圖2-12. 博勒-諾德漢穿隧示意圖 16
圖2-13. 普爾-法蘭克發射機制示意圖 17
圖2-14. Pt/BSZT/Pt系統之log(I)-log(V)的電性斜率變化 18
圖2-15. 非對稱之Trap結構雙極式操作示意圖 19
圖2-16. Cu/Ta2O5/Pt 系統(a)電性量測示意圖,(b)銅燈絲與雙極式IV曲線 20
圖2-17. (a) Cu/Ta2O5/Pt未操作前,(b) Cu/Ta2O5/Pt銅燈絲在Ta2O5中形成 21
圖2-18. (a) Cu/Ta2O5/W結構示意圖,(b) Cu/Ta2O5/W的電性曲線 21
圖2-19. Cu/Ta2O5/W元件於(a)不同限制電流有多重式訊號記憶,(b)低電阻不受電極面積影響 22
圖2-20. Pt/TaOX/Pt元件結合1T1R 23
圖2-21. Pt/TaOX/Pt系統之(a)I-V曲線,以及(b) Pt/TaOX/Pt在切換過程所需克服的活化能 23
圖2-22. (a)氧遷移模擬圖,(b)切換前後HX-PES分析成分比較 24
圖2-23. Ta/TaOx/Pt 系統之,(a)雙極性切換圖,以及(b)TEM Oxygen Mapping 24
圖2-24. (a) Ti4O7/TiOx/Pt耐性測試,(b) Ta/TaOx/Pt耐性測試,(c) Ti4O7/TiOx/Pt Reset過程,(d) Ta/TaOx/Pt Reset過程 25
圖2-25.(a) TiN/TaOx/Pt電性切換,(b)自身氧化界面層(Interfacial layer) 26
圖2-26.(a) TiN/TaOX/Pt的EDX縱深分析,(b)電性操作時的熱穩定性[39] 27
圖2-27.(a) TiN/TaOX/Pt耐性測試,(b) Cu/TaOX/Pt耐性測試[39] 27
圖2-28. Pt/Ta2O5-X/TaO2-X/Pt之(a)結構示意圖,(b)Cross-bar,(c)元件的MIM 28
圖2-29.(a) Pt/Ta2O5-X/TaO2-X/Pt電阻切換,(b)在不同氧含量下的電阻切換 29
圖2-30. Pt/Ta2O5-X/TaO2-X/Pt在TEM及EELS縱深分析示意圖 29
圖3-1. 整體實驗流程圖 33
圖3-2. 矽晶片基材清洗流程圖 33
圖3-3. 交叉電極形成的電阻式記憶體 34
圖3-4. 陰極遮罩(Shadow Mask) 34
(a)上下電極啞鈴狀遮罩 (b)中間介電層方塊狀遮罩 34
圖3-5. 共濺鍍系統示意圖 36
圖3-6. 微波電漿系統示意圖 37
圖3-7. RF氧氣電漿氧化系統示意圖 38
圖3-8. X光繞射布拉格幾何示意圖 40
圖3-9. 電性量測裝置簡圖 41
圖4-1. TaNx電阻率對N2分量圖 43
圖4-2. XRD分析圖(a)TaN,(b)TaN+Cu 44
圖4-3. TaOx(Cu)膜中XPS縱深成分分析 48
圖4-4. TaOx(Cu)薄膜層中Ta 4f分峰分析 50
圖4-5. TaOx(Cu)薄膜層的Ta、O、N、Cu縱深分析 50
圖4-6. MIM結構的TEM影像(a)TEM影像,(b)HRTEM影像 52
圖4-7. MIM元件底電極為漸層性的TEM影像 53
圖4-8. MIM元件以及傅立葉轉換繞射TEM影像 54
圖4-9. TaN/Cu-TaOx/ TaN(Cu)元件在5 μA限制電流下的I-V循環圖 57
圖4-10. TaN/Cu-TaOx/ TaN(Cu)系統在5 μA限制電流下連續操作100次時電阻狀態示意圖 57
圖4-11. TaN/Cu-TaOx/ TaN(Cu)系統在5 μA限制電流下第1次循環之電性機制分析 (a)lnI-V1/2作圖分析,(b)ln(I/V)-V1/2作圖分析,(c)logI-logV作圖分析 58
圖4-12. TaN/Cu-TaOx/ TaN(Cu)元件在10 μA限制電流下的I-V循環圖 59
圖4-13. TaN/Cu-TaOx/ TaN(Cu)系統在10 μA限制電流下連續操作55次時電阻狀態示意圖 59
圖4-14. TaN/Cu-TaOx/ TaN(Cu)系統在10 μA限制電流下第6次循環之電性機制分析 (a)lnI-V1/2作圖分析,(b)ln(I/V)-V1/2作圖分析,(c)logI-logV作圖分析 60
圖4-15. 元件在低電阻態不同限制電流導通下的變溫電阻值量測 (a) 5 μA (內側為25-75 ℃的對應電阻值),(b) 10 μA 62
圖4-16. TaN/Cu-TaOx/TaN(Cu)系統於電阻切換過程的機制模擬示意圖 63
圖4-17. 電阻薄膜中的Ta 4f光電子能譜圖 (a)未氧化,(b)氧化處理後 66
圖4-18. 電阻薄膜中的N 1s光電子能譜圖 (a)未氧化,(b)氧化處理後 67
圖4-19. 電阻薄膜中的Cu 2p光電子能譜圖 (a)未氧化,(b)氧化處理後 68
圖4-20. TaN/Cu-TaOx/TaN(Cu)薄膜元件在SEM下的截面形貌 69
圖4-21. 元件在3.5 μA限制電流下的I-V循環圖 71
圖4-22. 元件在3.5 μA限制電流下100次連續操作的電阻狀態示意圖 71
圖4-23. 元件於3.5 μA限制電流下第80次循環之logI-logV作圖 71
圖4-24. 元件在13 μA限制電流下的I-V循環圖 72
圖4-25. 元件在13 μA限制電流下20次連續操作的電阻狀態示意圖 72
圖4-26. 元件於13 μA限制電流下第20次循環之logI-logV作圖 72
圖4-27. 元件在不同限制電流導通下的變溫電阻值量測 (a) 3.5 μA ,(b) 13 μA 73
圖4-28. TaN/Cu-TaOx/TaN(Cu)系統於電阻切換過程的機制模擬示意圖 74


表3-1. 實驗耗材簡表 31
表3-2. TaN薄膜之製備參數 35
表3-3. TaN(Cu)薄膜之製備參數 35
表3-4. 分析儀器簡表 39
表4-1. 微波電漿氧化電阻層製程參數表 45
表4-2. Ta、N、O、Cu縱深分析原子百分比 51
表4-3. RF電漿氧化電阻層製程參數表 65
[1]R. Waser, R. Dittmann, G. Staikov, K. Szot, “Redox-based resistive switching memories nanoionic mechanisms, prospects, and challenges”, Adv. Mater. 21 (2009) 2632-2663.
[2]A. Gruverman and A. Kholkin, “Nanoscale ferroelectrics: processing, characterization and future trends”, Rep. Prog. Phys. 69 (2006) 2443-2474.
[3]C. Chappert, A. Fert and F. N. van Dau, “The emergence of spin electronics in data storage”, Nature Mater. 6 (2007) 813-823.
[4]M. Wuttig and N. Yamada, “Phase-change materials for rewriteable data storage,” Nature Mater. 6 (2007) 824-832.
[5]S.-E. Ahn, M.-J. Lee, Y. Park, B. S. Kang, C. B. Lee, K. H. Kim, S. Seo, D.-S. Suh, D.-C. Kim, J. Hur, W. Xianyu, G. Stefanovich, H. Yin, I.-K. Yoo, J.-H. Lee, J.-B. Park and B. H. Park, “Write current reduction in transition oxide based resistance-change memory”, Adv. Mater. 20 (2008) 924-928.
[6]J. H. Choi, S. N. Das, and J. M. Myoung, “Controllable resistance switching behavior of NiO/SiO2 double layers for nonvolatile memory applications”, Appl. Phys. Lett. 95 (2009) 062105.
[7]M. Liu, Z. Abid, W. Wang, X. He, Q. Liu, and W. Guan, “Multilevel resistive switching with ionic and metallic filaments”, Appl. Phys. Lett. 94 (2009) 233106.
[8]W. G. Kim, S. W. Rhee, “Multilevel resistive switching with ionic and metallic filaments”, Microelectron. Eng. 86 (2009) 2153-2156.
[9]Y. Li, S. Long, M. Zhang, Q. Liu, L. Shao, S. Zhang, Y. Wang, Q. Zuo, S. Liu, and M. Liu, “Resistive switching properties of Au/ZrO2/Ag structure for low-voltage nonvolatile memory applications”, IEEE Electron Device Lett. 31 (2010) 117-119.
[10]A. Sawa, “Resistance Switching in transition metal oxide”, Mater. Today 11(2008) 28-36.
[11]H. Akinaga, H. Shima, “Resistive random access memory (RRAM) based on metal oxide”, Proc IEEE. 98 (2010) 2237-2251.
[12]K. Szot, W. Speier, G. Bihlmayer, R. Waser, “Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3,” Nautre Mater. 5 (2006) 312-320.
[13]C. Y. Lin, D. Y. Lee, S. Y. Wang, C. C. Lin, T. Y. Tseng, “Effect of thermal treatment on resistive switching characteristics in Pt/Ti/Al2O3/Pt devices,” Surf. Coat. Technol. 203 (2008) 628-631.
[14]C. Y. Lin, D. Y. Lee, S. Y. Wang, C. C. Lin, T. Y. Tseng, “Reproducible resistive switching behavior in sputtered CeO2 polycrystalline films,” Surf. Coat. Technol. 203 (2008) 480-483.
[15]C. J. Kim, S.-G. Yoon, K.-J. Choi, S.-O. Ryu, S.-M. Yoon, N.-Y. Lee and B.-G. Yu, “Characterization of silver-saturated Ge-Te chalcogendie thin films for nonvolatile random access memory,” J. Vac. Sci. Technol. B 24 (2006) 721-724.
[16]M. N. Kozicki, C. Gopalan, M. Balakrishnan and M. Mitkova, “A low-power nonvolatile switching element based on copper-tungsten oxide solid electrolyte,” IEEE Trans. Nanotechnol. 5 (2006) 535-544.
[17]H. Y. Jeong, J. Y. Kim, J. W. Kim, J. O. Hwang, J.-E. Kim, J. Y. Lee, T. H. Yoon, B. J. Cho, S. O. Kim, R. S. Ruoff, and S.-Y. Choi, “Graphene oxide thin films for flexible nonvolatile memory applications,” Nano Lett. 10 (2010) 4381-4386.
[18]G.-S. Park, X.-S. Li, D.-C. Kim, R.-J. Jung, M.-J. Lee, S. Seo, “Observation of electric-field induced Ni filament channels in polycrystalline NiOx film”, Appl. Phys. Lett. 91 (2007) 222103.
[19]W. Wu, X. Tong, R. Zhao, L. Shi, H. Yang, and Y. C. Yeo, “Novel bipolar TaOx-based resistive random access memory”, 11th Annual Non-Volatile Memory Technology Symposium (NVMTS), Singapore, 7-9 Nov. 2011, 1-5.
[20]C. Vallee, P. Gonon, C. Jorel, and F. El Kamel, “Electrode oxygen-affinity influence on voltage nonlinearities in high-k metal-insulator-metal capacitors,” Appl. Phys. Lett. 96 (2010) 233504.
[21]A. Baikalov, Y. Q. Wang, B.Shen, B. Lorenz, S. Tsui, Y. Y. Sun, Y. Y. Xue and C. W. Chu, “Field-driven hysteretic and reversible resistive switch at the Ag-Pr0.7Ca0.3MnO3 interface”, Appl. Phys. Lett. 83 (2003) 957-959.
[22]W.-G. Kim, S.-W. Rhee, “Effect of the top electrode material on the resistive switching of TiO2 thin film”, Microelectron. Eng. 87 (2010) 981-983.
[23]K. Fujiwara, T. Yajima, Y. Nakamura, M. J. Rozenberg, and H. Takagi, “Electrode-geometry control of the formation of a conductive bridge in oxide resistance switching devices”, Appl. Phys. Express. 2 (2009) 081401-081403.
[24]M. N. Kozicki, M. Yun, L. Hilt and A. Singh, “Applications of programmable resistance changes in metal-doped chalcogenides”, J. Electrochem. Soc. 99 (1999) 298-309.
[25]Y. Hirose and H. Hirose, “Polarity-dependent memory switching and behavior of Ag dendrite in Ag-photodoped amorphous As2S3 films”, J. Appl. Phys. 47 (1976) 2767-2772.
[26]Y. Tsuji, T. Sakamoto, N. Banno, H. Hada, and M. Aono, “Off-state and turn-on characteristics of solid electrolyte switch,” Appl. Phys. Lett. 96 (2010) 023504.
[27]D. Lee, D.-J. Seong, H. J. Choi, I. Jo, R. Dong, W. Xiang, S. Oh, M. Pyun, S.-O. Seo, S. Heo, M. Jo, D.-K. Hwang, H. K. Park, M. Chang, M. Hasan and H. Hwang, “Excellent uniformity and reproducible resistance switching characteristics of doped binary metal oxides for non-volatile resistance memory applications,” IEDM (2006) 346733.
[28]S. Kaeriyama, T. Sakamoto, H. Sunamura, M. Mizuno, H.Kawaura, K. Terabe, T. Nakayama and M. Aono, “A Nonvolatile Programmable Solid-Electrolyte Nanometer Switch”, IEEE J. Solid-State Circuits 40 (2005) 168-176.
[29]C. Shindler, G. Staikov, and R. Waser, “Electrode kinetics of Cu-SiO2-based resistive switching cells: Overcoming the voltage-time dilemma of electrochemical metallization memories”, Appl. Phys. Lett. 94 (2009) 072109.
[30]D. A. Neamen, Semiconductor Physics &; Devices, McGraw-Hill Science Inc., New York, 2002.
[31]J. C. Ranuarez, M. J. Deen, Chih-Hung Chen, “A review of gate tunneling current in MOS devices”, Microelectronics Reliability 46 (2006) 1939-1956.
[32]S.M Sez, Physics of Semiconductor Devices, 2nd Edition, John Wiley &; Sons Inc. New York, USA. 1981.
[33]Y. Xia, W. He, L. Chen, X. Meng, Z. Liu. “Field-induced resistive switching based on space-charge-limited current”, Appl. Phys. Lett. 90 (2007) 022907.
[34]K. C. Kao and W. Hwang, Electrical Transport in Solids, Academic, New York. 1970.
[35]T. Sakamoto, N. Banno, N. Iguchi, H. Kawaruwa, H. Sunamura, S. Fujieda, K. Terabe, T. Hasegawa, and M. Aono, “A Ta2O5 solid-electrolyte switch with improved reliability”, IEEE Symposium on, VLSI Technology, Kyoto, 12-14 June 2007 38-39.
[36]T. Y. Wu, F. Chen, M. J. Kao and M. J. Tsai, “Low current (5 pA) resistive switching memory using high-K Ta2O5 solid electrolyte”, Proceeding of the European, Solid State Device Research Conference, Athens, 14-18 Sept 2009 217-220.
[37]Z. Wei, Y. Kanzawa, K. Arita, Y. Katoh, K. Kawai, S. Muraoka, S. Mitani, S. Fujii1, K.Katayama, M. Iijima, T. Mikawa, T. Ninomiya, R. Miyanaga, Y. Kawashima, K. Tsuji1, A. Himeno, T. Okada, R. Azuma, K. Shimakawa, H. Sugaya, and T. Takagi, R. Yasuhara, K.Horiba, H. Kumigashira, and M. Oshima, “Highly Reliable TaOx ReRAM and Direct Evidence of Redox Reaction Mechanism”, IEDM (2008) 1-4.
[38]J. J. Yang, M. X. Zhang, J. P. Strachan, F. Miao, M. D. Pickett, R. D. Kelley, G. Medeiros-Ribeiro, and R. S. Williams, “High switching endurance in TaOx memristive devices”, Appl. Phys. Lett. 97 (2010) 232102.
[39]L. Zhang, R. Huang, D. Gao, Y. Pan, S. Qin, Z. Yu, C. Shi, Y. Wang, “Thermally stable TaOx-based resistive memory with TiN electrode for MLC application”, ICSICT 10th IEEE International Conference, Shanghai, China, 1-4 Nov 2010 1160-1162.
[40]M. J. Lee, C. B. Lee, D. Lee, S. R. Lee, M. Chang, J. H. Hur1, Y. B. Kim, C. J. Kim, D. H. Seo, S. Seo, U. I. Chung, I. K. Yoo, and K. Kim, “A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5-x/TaO2-x bilayer structures”, Nature Mater. 10 (2011) 625-630.
[41]C.-J. Li, S. Jou, W. L. Chen, ” Effect of Pt and Al Electrodes on Resistive Switching Properties of Sputter-Deposited Cu-Doped SiO2 Film”, Jpn. J. Appl. Phys. 50 (2011) 01BG08 1-4.
[42]T. Sakamoto, K. Lister, N. Banno, T. Hasegawa, K. Terabe, M. Aono, ” Electronic transport in Ta2O5 resistive switch”, Appl. Phys. Lett. 91 (2007) 092110 1-3.
[43]P. Zhou, M. Yin, H. J. Wan, H. B. Lu, T. A. Tang, and Y. Y. Lin, “ Role of TaON interface for CuxO resistive switching memory based on a combined model”, Appl. Phys. Lett. 94 (2009) 0535101-3.
[44]H. J. Wan, P. Zhou, L. Ye, Y. Y. Lin, J. G. Wu, H. Wu, M. H. Chi, “Retention-failure mechanism of TaN/CuxO/Cu resistive memory with good data retention capability”, J. Vac. Sci. Technol. B. 27 (2009) 2468.
[45]T. Riekkinen , J. Molarius, T. Laurila, A. Nurmela, I. Suni, J.K. Kivilahti, “Reactive sputter deposition and properties of TaxN thin films”, Microelectronic Eng. 64 (2002) 289–297.
[46]J.H. Hsieh, C.M. Wang, C. Li, “Deposition and characterization of TaN–Cu nanocomposite thin films”, Surf. Coat. Technol. 200 (2006) 3179 – 3183.
[47]C.K. Chung, T.S. Chen, N.W. Chang, “Effect of reactive gases flow ratios on the microstructure and electrical resistivity of Ta–N–O thin films by reactive co-sputtering”, Thin Solid Films 519 (2011) 5099–5012.
[48]利嘉仁,「共濺鍍法沉積之銅摻雜二氧化矽薄膜的電阻切換特性與電極效應」, 國立台灣科技大學工程技術研究所碩士論文,民國99年。
[49]詹益明,「氧化亞銅-氧化鋅異質接面太陽能電池之研製」,國立台灣科技大學工程技術研究所碩士論文, 民國99年。
[50]吳泰伯, 許樹恩, 「X光繞射原理與材料結構分析」, 中國材料科學學會, 民國95年9月。
[51]T. Riekkinen, J. Molarius, T. Laurila, A. Nurmela, I. Suni, and J.K. Kivilahti, “ Reactive sputter deposition and properties of TaxN thin films”, Microelectron. Eng. 64 (2002) 289-297.
[52]M. Hara, E. Chiba, A. Ishikawa, T. Takata, J. N. Kondo, and K. Domen, “Ta3N5 and TaON thin films on Ta foil: Surface composition and stability”, J. Phys. Chem. B, 107(2003) 13441-13445.
[53]A. Arranz, C. Palacio, “Composition of tantalum nitride thin films grown by low-energy nitrogen implantation: a factor analysis study of the Ta 4 f XPS core level”, Appl. Phys. A. 81(2005) 1405-1410.
[54]J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer, Eden Prairie, Minnesota, USA 1992.
[55]I. Lyubinetsky, S. Thevuthasan, D.E. McCready, D.R. Baer, “Formation of single-phase oxide nanoclusters: Cu2O on SrTiO3(100)” J. Appl. Phys. 94 (2003) 7926-7928.
[56]王貞芮,「添加銅之二氧化矽複合薄膜之研究」,國立台灣科技大學材料科技研究所碩士論文, 民國94年。
[57]Q. Xie, X. P. Qu , J. J. Tan, Y. L. Jiang, M. Zhou, T. Chen, G. P. Ru, “Superior thermal stability of Ta/TaN bi-layer structure for copper metallization”, Appl. Sur. Sci. 253 (2006) 1666–1672.
[58]H. Xu, W. Wang. “Template synthesis of multishelled Cu2O hollow spheres with a single‐crystalline shell wall”, Ang. Chem. Int. Ed. 46 (2007) 1489 –1492.
[59]J. W. Park, D. Y. Kim, J. K. Lee, “Reproducible resistive switching in nonstoichiometric nickel oxide films grown by rf reactive sputtering for resistive random access memory applications “, J. Vac. Sci. Technol., A 23 (2005) 1309-1313.
[60]H. Shima, F. Takano, H. Muramatsu, H.Akinaga, Y. Tamai, “Voltage polarity dependent low-power and high-speed resistance switching in CoO resistance random access memory with Ta electrode”, Appl. Phys. Lett. 93 (2008) 113504-113506.
[61]F. Volpi, L. Cadix, G. Berthome, E. Blanquet, N. Jourdan, J. Torres, “XPS studies of the ALD-growth of TaN diffusion barriers: Impact of the dielectric surface chemistry on the growth mechanism”, Microelectron. Eng. 85 (2008) 2068-2070.
[62]F. Kurnia, H.C.U. Jung, R. Jung, C. Liu, “Composition dependence of unipolar resistance switching in TaOx thin films”, Phys. Status Solidi RRL 5 (2011) 253.
[63]M. Scrocco, “Satellite structure in the x-ray photoelectron spectra of CuO and Cu2O”, Chem. Phys. Lett. 63 (1979) 52-56.
[64]A. Chen, S. Haddad, Y. C. Wu, T. N. Fang, Z. Lan, S. Avanzino, S. Pangrle, M. Buynoski, M. Rathor, W. Cai, N. Tripsas, C. Bill, M. VanBuskirk, M. Taguchi, “Non-volatile resistive switching for advanced memory applications “, IEDM Tech. Dig. (2005) 746-749.
[65]K. Fujiwara, T. Nemoto, M.J. Rozenberg, Y. Nakamura, H. Takagi, “Resistance Switching and Formation of a Conductive Bridge in Metal/Binary Oxide/Metal Structure for Memory Devices”, Jpn. J. Appl. Phys. 47 (2008) 6266-6271.
[66]Y.C. Yang, C. Chen, F. Zeng, F. Pan, “Multilevel resistance switching in Cu/TaOx/Pt structures induced by a coupled mechanism”, J. Appl. Phys. 107 (2010) 093701-093705.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔