(3.237.20.246) 您好!臺灣時間:2021/04/17 16:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張凱伊
研究生(外文):Kai-Yi Chang
論文名稱:雙酚A-甲基丙烯酸縮水甘油酯之網絡結構對機械與熱力學性質影響之探討
論文名稱(外文):A Study on Effect of Network Structure on Mechanical and Thermodynamic Properties in Bis-phenol A Diglycidylmethacrylate
指導教授:胡孝光胡孝光引用關係
指導教授(外文):Shiaw-Guang Hu
口試委員:胡孝光
口試委員(外文):Shiaw-Guang Hu
口試日期:2012-07-09
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:材料科學與工程系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:67
中文關鍵詞:光固化雙酚A-甲基丙烯酸縮水甘油酯轉化率機械性質熱力學性質
外文關鍵詞:PhotocuringBisGMADegree of conversionMechanical propertiesThermodynamic properties
相關次數:
  • 被引用被引用:0
  • 點閱點閱:296
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
  本研究以不同比例的進料bis-phenol A diglycidylmethacrylate(BisGMA)及2-hydroxyethyl methacrylate(HEMA),以camphoroquinone(CQ)與diphenylphosphine oxide為光起始劑,添加不同含量的Silica,並以可見光聚合固化,討論不同BisGMA/HEMA進料比及Silica添加量對反應轉化率,交聯網路結構與性質的影響。
  藉由13C固態核磁共振儀得知,固化產物中BisGMA含量越多,未反應的C=C也越多,且aliphatic C=C的轉化率下降。由FTIR發現BisGMA含量增加而雙鍵轉化率下降,另外質量轉化率和雙鍵轉化率的趨勢一致,但意義不同。壓縮模數隨BisGMA進料量增加而上升,交聯密度會增加,且網路中物理纏結的密度(N_s)和網路中化學交聯的密度(N_c)都會增加,表示BisGMA的添加同時有助於物理性及化學性的交聯。BisGMA相對含量提高,會讓交聯產物的楊氏係數升高,且其終端強度與終端伸長量都在BisGMA/HEMA進料重量比為60/40時達到最高值。此外,利用交聯密度與高分子吸水率可計算得出材料的水和高分子間交互作用參數(χ值),χ值越大,平衡含水率越低。固化體積收縮率隨BisGMA的進料量增加而下降,因BisGMA帶有較多的不飽和鍵。由TGA實驗發現HEMA相對量增加,熱裂解溫度提高,因HEMA分子的溶解度參數較BisGMA大。
  另一方面添加Silica的高分子,在低添加量的時候,轉化率隨添加量增加而上升,但添加過量時在SEM下發現silica粒子產生聚集,轉化率降低。添加的量增加,平衡含水率下降,因在高分子中添加的Silica為疏水型的二氧化矽。除此之外,Silica添加量增加,可提升材料的壓縮模數,交聯密度增加,且網路中物理纏結的密度(N_s)和網路中化學交聯的密度(N_c)都會增加,另外會使交聯產物的楊氏係數呈現非線性的增加,且隨Silica添加量的增加,終端強度及終端伸長量也隨之提高。而Silica含量增加時,會造成較大的質量分率,固化體積收縮率會降低。在高分子中添加無機物可以提高其熱裂解溫度,增加材料的熱穩定性,且因碳化的高分子受二氧化矽影響,而堆積於二氧化矽的表面,使殘餘率略微提高。
  實驗結果得知當改變BisGMA/HEMA進料比及silica含量時,會影響高分子的網路結構,進而影響到交聯產物的交聯密度、力學性質、含水率,水與高分子的作用及熱安定性等性質。
  Adhesives were prepared by using bis-phenol A diglycidylmethacrylate(BisGMA)and 2-hydroxyethyl methacrylate(HEMA)of different weight ratios in feed. Camphoroquinone(CQ)and diphenylphosphine oxide are photoinitiators. We add silica in various contents of feed and cure BisGMA and HEMA with visible light and photoinitiators. We discuss the effects of BisGMA/HEMA weight ratios in feed and contents of silica on conversion of reaction, network structure, thermodynamic and mechanical properties.
  Results show that quantities of unreacted C=C increase with increasing the contents of BisGMA in polymer by 13C Solid-state NMR. According to FTIR analysis, as the contents of BisGMA increase, the conversions of double bonds decrease. Mass conversion ratios have the same trend as the conversions of double bonds. Compressive modulus, Young’s modulus and crosslinking densities increase with increasing the contents of BisGMA in feed. Both of the density of physical entanglement(Ns)and the density of chemical crosslinking in network(Nc) increase with increasing the contents of BisGMA in feed, showing that adding BisGMA is favorable for physical and chemical crosslinking. When BisGMA/HEMA weight ratio in feed is 60/40, the ultimate strength and ultimate elongation at the maximum. In addition, the interaction parameters of water and polymers in adhesives (χ) were calculated by crosslinking densities and equilibrium water contents. As the χ values increase, the equilibrium water contents decrease. Curing volume shrinkages decrease with increasing the contents of BisGMA in feed because of BisGMA with more unsaturated bonds. We find pyrolysis temperatures increase with increasing the relative contents of HEMA by TGA, because the solubility parameter of HEMA is higher than BisGMA’s.
  On the other hand, when the polymers are with low contents of silica, the conversions of double bonds increase with increasing the contents of silica. But we observed with SEM the aggregation of the silica particles at the excess of silica contents, and the conversions of double bonds decrease at this juncture. As the contents of silica increase, decreasing equilibrium water contents was found because the silica is hydrophobic. In addition, all of compressive modulus, crosslinking densities, the densities of physical entanglement in network, the densities of chemical crosslinking in network, ultimate strength and ultimate elongation increase with increasing the contents of silica. And Young’s modulus increase in a nonlinear relationship with increasing the contents of silica. The volume shrinkages decrease with increasing the contents of silica. Adding inorganic particles in adhesives can raise pyrolysis temperatures and thermal stability of materials. The char yield increases slightly because the carbonization of the polymer is affected in a minor way by silica and it accumulates at the silica surface.
  Experimental results show that when we vary BisGMA/HEMA ratios in feed and silica contents, that will influence the network structure of polymer, thereby affecting crosslinking density of adhesives, mechanical properties, equilibrium water contents, interactions between water and polymers, thermal stability and other properties of polymers.
中文摘要.....................................................................................................I
英文摘要..................................................................................................III
致謝...........................................................................................................V
目錄..........................................................................................................VI
圖表索引..................................................................................................IX

雙酚A-甲基丙烯酸縮水甘油酯之網絡結構對機械與熱力學性質影響之探討

一、前言......................................................................................................1
二、實驗方法
 2.1 BisGMA/HEMA高分子的製備...................................................7
 2.2 含Silica之複合材料的製備.........................................................7
 2.3 13C固態核磁共振儀分析.............................................................8
 2.4 雙鍵反應轉化率測試...................................................................8
 2.5 質量轉化率測定...........................................................................9
 2.6 平衡膨潤測定...............................................................................9
 2.7 抗壓縮變形測試...........................................................................9
 2.8 固化體積收縮率測試.................................................................10
 2.9 材料之表面型態觀察.................................................................10
 2.10 熱安定性測試...........................................................................10
三、結果與討論
3.1 13C固態核磁共振光譜(13C-SSNMR)分析...........................12
3.2 傅立葉轉換紅外線光譜(FTIR)分析......................................12      
   3.2.1 BisGMA/HEMA比例對雙鍵轉化率之影響..................13
   3.2.2 Silica添加量對雙鍵轉化率之影響.................................14
  3.3 質量轉化率分析.....................................................................14
  3.4 平衡含水率分析.....................................................................15
   3.4.1 BisGMA/HEMA比例對平衡含水率之影響..................15
   3.4.2 Silica添加量對平衡含水率之影響.................................15
  3.5 材料之抗壓縮測試.................................................................15
   3.5.1 壓縮模數與楊氏係數測定..............................................15
   3.5.2 含水率與交聯密度及Flory-Huggins交互作用參數......18
   3.5.3 水膠交聯結構對黏彈性質之影響分析..........................20
  3.6 固化體積收縮率分析.............................................................22
   3.6.1 BisGMA/HEMA比例對固化體積收縮率之影響..........22
   3.6.2 Silica添加量對固化體積收縮率之影響.........................22
  3.7 材料之表面型態分析.............................................................22
  3.8 交聯產物之熱安定性分析.....................................................23
   3.8.1 BisGMA/HEMA比例對熱安定性之影響......................23
   3.8.2 Silica添加量對熱安定性之影響.................................... 23
四、結論....................................................................................................25
五、參考文獻............................................................................................27




























圖表索引
Table 1. Composition conditions for materials preparation.……….....32
Table 2. The relative intensity of characteristic peaks in 13C-SSNMR spectra……………………………………………………….33
Table 3. The ultimate strength and elongation value of polymers…...…34
Table 4. Swelling, elasticity and Flory-Huggins interaction parameters
of polymers with different monomer ratios and various contents of silica………………………………………………..……...35
Table 5. Structural parameters of polymers……………………...……..36
Table 6. Thermal analysis value of materials……………….…...……...37
Figure 1(a). 13C-SSNMR spectra of BisGMA in polymer…………...….38
Figure 1(b). 13C-SSNMR spectra of sample 80/20 in polymer………...39
Figure 1(c). 13C-SSNMR spectra of sample 70/30 in polymer………...40
Figure 1(d). 13C-SSNMR spectra of sample 60/40 in polymer………...41
Figure 1(e). 13C-SSNMR spectra of sample 40/60 in polymer………...42
Figure 2. Absorbance of FTIR spectra of 40/60 in monomer and
polymer…………………………………………………….43
Figure 3(a). Plots of relative absorbance in monomer and polymer versus
weight concentration of BisGMA in feed………………44
Figure 3(b). Plots of relative absorbance in monomer and polymer versus
molar concentration of BisGMA in feed…………………45
Figure 4. Plots of degree of conversion versus concentration of BisGMA in feed………………………………………………………...46
Figure 5. Plots of degree of conversion versus silica content…………..47
Figure 6. Plots of mass conversion ratio versus concentration of BisGMA in feed………………………………………………………...48
Figure 7. Plots of water content versus concentration of BisGMA in
feed……………………………………………………….....49
Figure 8. Plots of water content versus silica content…………………..50
Figure 9(a). Stress-compression ratio curves in different ratios of BisGMA/HEMA……………………………………...……51
Figure 9(b). Stress-compression ratio curves in different contents of silica………………………………………………………..52
Figure 9(c). Zoom in the figure 9(b)…………………………………….53
Figure 10(a). Stress-strain curves in different ratios of BisGMA/ HEMA………………………………………………………..54
Figure 10(b). Stress-strain curves in different contents of silica………..55
Figure 10(c). Zoom in the figure 10(b)…………………………………56
Figure 11. Plots of compressive modulus versus concentration of BisGMA in feed………………………………………….….57
Figure 12. Plots of Young’s modulus versus concentration of BisGMA in feed………………………………………………………….58
Figure 13. Plots of compressive modulus versus silica content………...59
Figure 14. Plots of Young’s modulus versus silica content……………..60
Figure 15(a). Plots of compressive reduced stress against the strain term H(η,λ) for polymers with various ratios of BisGMA/ HEMA……………………………………………………61
Figure 15(b). Plots of compressive reduced stress against the strain term H(η,λ) for polymers with various contents of silica……..62
Figure 16. Plots of volume shrinkage versus concentration of BisGMA in feed………………………………………………………….63
Figure 17. Plots of volume shrinkage versus silica content…………….64
Figure 18. SEM images of materials. (a)60/40 (b)80/20 (c)Si-5(80/20) (d)Si-10(80/20) (e)Si-15(80/20)………………………….65
Figure 19(a). TGA curves in different ratios of BisGMA/ HEMA……..66
Figure 19(b). TGA curves in different contents of silica……………..…67
1.T. Sugaya, M. Kawanami, H. Noguchi, H. Kato, and N. Masaka, Periodontal healing after bonding treatment of vertical root fracture, Dent Traumatol, 17(4), 174-179(2001)
2.U. V. Lӓuppi, Radiation curing-an overview, Radiat Phys Chem, 35, 30-35(1990)
3.C. Decker, Photoinitiated crosslinking polymerization, Prog Polym Sci, 21, 593-650(1996)
4.J. P. Fouassier, Photoinitiation, photopolymerization, and photocuring, fundamentals and application, Hanser, 1-330(1995)
5.M. Ichihashi, M. Ueda, A. Budiyanto, T. Bito, M. Oka, M. Fukunaga, K. Tsuru, and T. Horikawa, UV-induced skin damage, Toxicology, 189, 21-39(2003)
6.S. E. Ullrich, Mechanisms underlying UV-induced immune suppression, Mutation Research, 571, 185-205(2005)
7.M. G. Buonocore, A simple method of increasing the adhesion of acrylic filling materials to enamel surfaces, J Dent Res, 34, 849-853(1955)
8.M. Rider, The shear strength of enamel-composite bonds, J Dent Res, 56, 237-244(1977)
9.A. P. Prevost, J. L. Fuller, and L. C. Peterson, The use of an intermediate resin in the acid-etch procedure: retentive strength, microleakage and failure mode analysis, J Dent Res, 61, 412-418(1982)
10.E. J. Swift and P. T. Triolo, Bond strengths of scotchbond multi-purpose to moist dentin and enamel, Am J Dent, 5, 318(1992)
11.M. Buonocore, W. Wileman, and F. Brudevold, A report on a resin composition capable of bonding to human dentin surfaces, J Dent Res, 35, 846(1956)
12.H. H. Chandler, R. L. Bowen, and G. C. Paffenbarger, Physical properties of a radiopaque denture base material, J Biomed Mater Res, 5, 335-357(1971)
13.M. G. Mantellini, T. M. Botero, P. Yaman, J. B. Dennison, C. T. Hanks, and J. E. Nӧr, Adhesive resin and the hydrophilic monomer HEMA induce VEGF expression on dental pulp cells and macrophages, Dent Mater, 22(5), 434-440(2006)
14.D. R. Morgan, S. Kalachandra, H. K. Shobha, N. Gunduz, and E. O. Stejskal, Analysis of a dimethacrylate copolymer (BisGMA and TEGDMA) network by DSC and 13C solution and solid-state NMR spectroscopy, Biomaterials, 21, 1897-1903(2000)
15.X. Guo, Y. Wang, P. Spencer, Q. Ye, and X. Yao, Effects of water content and initiator composition on photopolymerization of a model BisGMA/HEMA resin, Dent Mater, 24, 824-831(2008)
16.J. Park, J. Eslick, Q. Ye, A. Misra, and P. Spencer, The influence of chemical structure on the properties in methacrylate-based dentin adhesives, Dent Mater, 27(11), 1086-1093(2011)
17.C. S. Pfeifer, Z. R. Shelton, R. R. Braga, D. Windmoller, J. C. Machado, and J. W. Stansbury, Characterization of dimethacrylate polymeric networks: A study of the crosslinked structure formed by monomers used in dental composites, Eur Polym J, 47, 162-170(2011)
18.P. Spencer and Y. Wang, Adhesive phase separation at dentin interface under wet bonding conditions, J Biomed Mater Res, 62, 447-456(2002)
19.S. J. Paul, M. Leach, F. A. Rueggeberg, and D. H. Pashley, Effects of water content on the physical properties of model dentine primer and bonding resins, J Dent, 27, 209-214(1999)
20.K. S. Anseth, S. M. Newman, and C. N. Bowman, Polymeric dental composites: properties and reaction behavior of multimethacrylate dental restorations, Adv Polym Sci, 122, 177-217(1995)
21.J. L. Ferracane, Current trends in dental composites, Crit Rev Oral Biol Med, 6, 302-318(1995)
22.N. Moszner and U. Salz, New development of polymeric dental composites, Prog Polym Sci, 26, 535-576(2001)
23.J. Luo, R. Seghi, and J. Lannutti, Effect of silane coupling agents on the wear resistance of polymer-nanoporous silica gel dental composites, Mater Sci Eng, C5, 15-22(1997)
24.L. Musanje and J. L. Ferracane, Effects of resin formulation and nanofiller surface treatment on the properties of experimental hybrid resin composite, Biomaterials, 25, 4065-4071(2004)
25.K. S. Wilsona, K. Zhang, and J. M. Antonucci, Systematic variation of interfacial phase reactivity in dental nanocomposites, Biomaterials, 26, 5095(2005)
26.Y. Xia, F. M. Zhang, H. F. Xie, and N. Gu, Nanoparticle-reinforced resin-based dental composites, J Dent, 36, 450-455(2008)
27.H. H. K. Xu, J. B. Quinna, D. T. Smith, J. M. Antonucci, G. E. Schumacher, and F. C. Eichmiller, Dental resin composites containing silica-fused whiskers-effects of whisker-to-silica ratio on fracture toughness and indentation properties, Biomaterials, 23, 735-742(2002)
28.H. H. K. Xu, F. C. Eichmiller, J. M. Antonucci, G. E. Schumacher, and L. K. Ives, Dental resin composites containing ceramic whiskers and precured glass ionomer particles, Dent Mater, 16, 356-363(2000)
29.V. M. Karbhari and H. Strassler, Effect of fiber architecture on flexural characteristics and fracture of fiber-reinforced dental composites, Dent Mater, 23, 960-968(2007)
30.J. R. Condon and J. L. Ferracane, Reduced polymerization stress through non-bonded nanofiller particles, Biomaterials, 23, 3807-3815(2002)
31.N. Moszner, A. Gianasmidis, S. Klapdohr, U. K. Fischer, and V. Rheinberger, Light-curing dental composites based on ormocers of cross-linking alkoxysilane methacrylates and further nano- components, Dent Mater, 24, 851-856(2008)
32.M. M. Karabela and I. D. Sideridou, Synthesis and study of properties of dental resin composites with different nanosilica particles size, Dent Mater, 27, 825-835(2011)
33.H. Wang, M. Zhu, Y. Li, Q. Zhang, and H. Wang, Mechanical properties of dental resin composites by co-filling diatomite and nanosized silica particles, Mater Sci Eng, C31, 600-605(2011)
34.R. Frankenberger and F. R. Tay, Self-etch vs etch-and-rinse adhesives: effect of thermo-mechanical fatigue loading on marginal quality of bonded resin composite restorations, Dent Mater, 21(5), 397-412(2005)
35.B. V. Meerbeek, K. V. Landuyt, J. D. Munck, M. Hashimoto, M. Peumans, P. Lambrechts, Y. Yoshida, S. Inoue, and K. Suzuki, Technique-sensitivity of contemporary adhesives, Dent Mater, 24(1), 1-13(2005)
36.L. C. Mendes, A. D.Tedesco, and M. S. Miranda, Determination of degree of conversion as function of depth of a photo-initiated dental restoration composite, Polymer Testing, 24, 418-422(2005)
37.M. T. Lemon, M. S. Jones, and J. W. Stansbury, Hydrogen bonding interactions in methacrylate monomers and polymers, J Biomed Mater Res, 83(3), 734-746(2007)
38.I. Sideridou, V. Tserki, and G. Papanastasiou, Effect of chemical structure on degree of conversion in light-cured dimethacrylate-based dental resins, Biomaterials, 23, 1819-1829(2002)
39.J. D. Cho, H. T. Ju, and J. W. Hong, Photocuring kinetics of UV-initiated free-radical photopolymerizations with and without silica nanoparticles, J Polym Sci, 43, 658-670(2005)
40.P. Rosso and L. Ye, Epoxy/silica nanocomposites: nanoparticle- induced cure kinetics and microstructure, Macromol Rapid Commun, 10, 121-126(2007)
41.S. Garoushi, P. Vallittu, D. C. Watts, and L. Lassila, Effect of nanofiller fractions and temperature on polymerization shrinkage on glass fiber reinforced filling material, Dent Mater, 24, 606-610(2008)
42.F. Deng and K. J V. Vliet, Prediction of elastic properties for polymer-particle nanocomposites exhibiting an interphase, Nanotechnology, 22,1-7(2011)
43.F. Deng and Q. S. Zheng, An analytical model of effective electrical conductivity of carbon nanotube composites, Appl Phys Lett, 92, 071902(2008)
44.F. Deng, Q. S. Zheng, L. F. Wang, and C. W. Nan, Effects of anisotropy, aspect ratio, and nonstraightness of carbon nanotubes on thermal conductivity of carbon nanotube composites, Appl Phys Lett, 90, 021914(2007)
45.Q. S. Zheng and D. X. Du, An explicit and universally applicable estimate for the effective properties of multiphase composites which accounts for inclusion distribution, J Mech Phys Solids, 49, 2765–2788(2001)
46.K. Ulbrich, K. Dušek, M. Ilavsky, and J. Kopeček, Pretaration and properties of poly-(n-butylmethacrylamide) networks, Eur Polym J, 14, 45-49(1978)
47.K. Ulbrich, M. Ilavsky, K. Dušek, and J. Kopeček, Pretaration and properties of poly-(n-ethylmethacrylamide) networks, Eur Polym J, 13, 579-585(1977)
48.P. J. Flory, Principles of Polymer Chemistry, Cornell University Press, Ithaca, N. Y., Chapter 12, 13(1953)
49.L. B. Peppas and N. A. Peppas, Structural analysis of charged polymeric networks, Polym Bull, 20, 285(1988)
50.L. H. Sperling, Introduction to Physical Polymer Science, Wiley-Interscience, N. Y., 439(1986)
51.R. C. Ball, M. Doi, S. F. Edwards, and M. Warner, Elasticity of entangled networks, Polymer, 22, 1010-1018(1981)
52.R. G. Matthews, R. A. Duckett, I. M. Ward, and D. P. Joned, The biaxial drawing behaviour of poly(ethylene terephthalate), Polymer, 38, 4795-4802(1997)
53.I. Sakurada, A. Nakajima, and H. Fujiwara, Elasticity of entangled networks, J Appl Polym Sci, 35, 479(1959)
54.P. Thirion and T. Weil, Assessment of the sliding link model of chain entanglement in polymer networks, Polymer, 25, 609(1984)
55.M. G. Brereton and P. G. Klein, Analysis of the rubber elasticity of polyethylene networks based on the slip link model of S. F. Edwards et al., Polymer, 29, 970(1988)
56.M. Podgorski, Structure–property relationship in new photo- cured dimethacrylate-based dental resins, Dent Mater, 28, 398-409(2012)
57.C. S. Pfeifer, Z. R. Shelton, R. R. Braga, D. Windmoller, J. C. Machado, and J. W. Stansbury, Characterization of dimethacrylate polymeric networks: A study of the crosslinked structure formed by monomers used in dental composites, Eur Polym J, 47, 162-170(2011)
58.E. S. Park, C. K. Kim, J. H. Bae, and B. H. Cho, The effect of the strength and wetting characteristics of Bis-GMA/TEGDMA-based adhesives on the bond strength to dentin, J Korean Acad Conserv Dent, 36(2), 139-148(2011)
59.J. E. Elliott, L. G. Lovell, C. N. Bowman, Primary cyclization in the polymerization of bis-GMA and TEGDMA: a modeling approach to understanding the cure of dental resins, Dent Mater, 17(3), 221-229(2001)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔