(34.204.185.54) 您好!臺灣時間:2021/04/16 20:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林志學
研究生(外文):Chih-Hsueh Lin
論文名稱:超高分子量聚乙烯/鹽酸處理凹凸棒土奈米纖維超高延伸性質之研究
論文名稱(外文):Ultradrawing Properties of Ultra-high Molecular Weight Polyethylene/Hydrochloric Acid Treated Attapulgite Fibers
指導教授:葉正濤
指導教授(外文):Jen-Taut Yeh
口試委員:葉正濤
口試委員(外文):Jen-Taut Yeh
口試日期:2012-07-22
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:材料科學與工程系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:101
中文關鍵詞:酸處理凹凸棒土超高分子量聚乙烯
外文關鍵詞:acid treatedattapulgiteultrahigh molecular weight polyethylene
相關次數:
  • 被引用被引用:0
  • 點閱點閱:104
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要針對純化凹凸棒土(purified attapulgite (ATP))及酸處理凹凸棒土(acid treated attapulgite (ATP))含量對超高分子量聚乙烯(ultrahigh molecular weight polyethylene, UHMWPE)/ purified ATP (F2Ay)及UHMWPE/acid treated ATP (F2AxM-y) 初絲樣品的可延伸性質作一有系統性探討。F2Ay及F2AxM-y初絲樣品的可延伸比(Dra)數值分別隨純化和酸處理凹凸棒土添加量增加達到0.05 及0.025 phr最適化值時達到最大值。在相同凹凸棒土添加量下,每個F2AxM-y初絲樣品的Dra數值都明顯高於F2Ay初絲樣品的Dra數值。值得注意的是, F2AxM-0.0005初絲系列樣品的Dra數值隨鹽酸達5M之最適化酸蝕濃度時,其Dra數值達到另一最大數值249 。經延伸相同倍率的F2Ay和F2AxM-y纖維系列樣品,其順向度(fo)數值隨其內純化或酸處理凹凸棒土含量分別達最適化0.05及0.025 phr添加量時,其對應的fo數值均達到最大值。在相同的延伸倍率及凹凸棒土添加量下,F2AxM-y延伸纖維樣品的fo值比F2Ay延伸纖維樣品的fo值高。 值得注意的是當鹽酸濃度及處理時間分別在最適化之5M和60分鐘時,F2A5M-0.0005延伸纖維樣品的fo值均較經其他酸蝕條件製備之對應具相同延伸倍率F2AxM-0.0005延伸纖維樣品為高。抗張性能研究表明,當加入最適量的純化或酸處理凹凸棒土,延伸後的纖維樣品F2Ay和F2AxM-y 都能獲得優異的抗張性能。為了瞭解上述這些有趣的現象,本研究中對純化或酸處理凹凸棒土的表面元素及型態, 比表面積與紅外光譜進行分析, 另亦對初絲或延伸纖維樣品的DSC熱學, 順向度和抗張性質進行研究。
Systemic investigation of the influence of the original and modified nanosilica contents on the ultradrawing properties of ultrahigh molecular weight polyethylene(UHMWPE)/purified ATP (F2Ay) and UHMWPE/ acid treated ATP (F2AxM-y) as-prepared fibers are reported. After treating ATP nanofibers in a 5 M HCl solution for 60 minutes, the maximal specific surface areas of the acid treated ATP nanofibers reaches around 282 m2/g. After incorporation of purified or acid treated ATP in UHMWPE, the Tm (or lc) and Xc values of F2Ay and F2AxM-y as-prepared fiber series specimens reduce and increase significantly, respectively, as their purified and/or acid treated ATP contents increase. In which, Tm(or lc) and Xc values of the F2AxM-y as-prepared fiber specimens are significantly lower and higher than those of the corresponding F2Ay as-prepared fiber specimens with the same ATP contents but without treating with HCl solutions, respectively. Moreover, it is worth noting that F2AxM-y as-prepared fiber series specimens exhibits the lowest Tm(or lc) but the highest Xc values with the fixed acid treated ATP contents and the hydrochloric acid concentration increaseing to 5M optimal value. The Dra values of F2Ay as-prepared fiber series specimens increase significantly with the initial increase in purified ATP contents and then reach a maximal value at 145 as their purified ATP contents approach an optimum value at 0.05 phr . After treatment of hydrochloric acid on purified ATP nanofibers, the Dra values of each F2AxM-y as-prepared fiber series specimens are significantly higher than those of the corresponding F2Ay as-prepared fiber specimens with the same purified ATP contents but without acid treatment. Similar to those found for F2Ay as-prepared fiber specimens, the Dra values of each F2AxM-y as-prepared fiber series specimens reach a maximal value as their acid treated ATP contents approach a lower optimum value at 0.025 phr. Moreover, it is worth noting that the maximum Dra values of the F2AxM-0.0005 as-prepared fiber specimens reached another maximum value at 249 as their purified ATP nanofibers were treated by 5M HCl. The fo values of drawn F2Ay and F2AxM-y fiber specimens with the same draw ratios reach a maximum value as their purified and acid treated ATP contents approach the optimum values at 0.05 and 0.025 phr, respectively. In which, fo values of drawn F2AxM-y fiber specimens are higher than those of the corresponding F2Ay fiber specimens with the same draw ratios and ATP contents but without treating with HCl solutions. It is worth to note that the fo values of drawn F2A5M-0.0005 fiber specimens are higher than those of the corresponding F2AxM-0.0005 fiber specimens as the HCl treating time approach the optimum value at 60 minutes. Tensile property analysis further suggested that excellent orientation and tensile properties of the drawn F2Ay and F2AxM-y fibers can be obtained by ultradrawing the fibers prepared at their optimum purified ATP and/or acid treated ATP contents. To understand the interesting orientation, ultradrawing and tensile properties of F2Ay and F2AxM-y fiber specimens, elemental and morphological analysis, specific surface areas, FTIR, thermal properties of the as-prepared fibers, orientation factor, achievable draw ratios and tensile properties of the purified and acid treated ATP were performed in this study.
論文摘要.....................................................Ⅱ
ABSTRACT Ⅳ
誌謝 Ⅵ
目錄 Ⅶ
圖表索引 Ⅹ
第一章 前言..................................................1
第二章 文獻回顧.............................................12
2.1 聚乙烯簡介..............................................12
2.2 高強力聚乙烯纖維........................................................13
2.2.1 高強力聚乙烯纖維之製造技術............................................13
2.2.1.1 固態擠出法(solid state extrusion).................................13
2.2.1.2 超延伸法(ultradrawing)............................................14
2.2.1.3 區域延伸法(zone drawing)..........................................15
2.2.1.4 表面成長法(surface growth method).................................16
2.2.1.5 凝膠紡絲法(gel spinning)..........................................18
2.2.2 UHMWPE使用凝膠紡絲技術得到高強力纖維的原因............................19
2.2.3 UHMWPE凝膠紡絲的技術要點..............................................20
2.3 熱拉伸對凝膠原絲形態和結構的影響........................................22 2.3.1 型態和力學性質........................................................22
2.3.2 熱性能................................................................22
2.3.3 聚集態結構............................................................23
2.4 凹凸棒土................................................................24
2.4.1凹凸棒土簡介...........................................................24
2.4.2凹凸棒土的表面處理.....................................................29
2.4.3凹凸棒土的應用.........................................................35
2.4.3.1凹凸棒土在環境保護的應用.............................................35
2.4.3.2凹凸棒土在高分子聚合物領域的應用.....................................39
2.4.3.3凹凸棒土在其他領域的應用.............................................41
第三章 實驗
3.1 UHMWPE/acid treated ATP凝膠纖維的製備...................................43
3.1.1酸處理凹凸棒土(acid treated ATP)製備.................................43
3.1.2凝膠溶液的製備.........................................................44
3.1.3凝膠紡絲流程...........................................................46
3.2 ATP、purified ATP及acid treated ATP的紅外光譜測.........................48
3.3 ATP、purified ATP及acid treated ATP的比表面積分析.......................48
3.4 凹凸棒土的表面型態及元素分析............................................48
3.5熱學性質分析.............................................................49
3.6分子順向度分析...........................................................49
3.7定溫熱延伸性質測定.......................................................50
3.8抗張性質分析.............................................................51
第四章 結果與討論
4.1 ATP, purified ATP與acid treated ATP的表面元素分析.......................52
4.2 ATP, purified ATP與acid treated ATP的表面形態分析.......................54
4.3 ATP, purified ATP與acid treated ATP比表面積分析.........................57
4.4 ATP, purified ATP與acid treated ATP樣品的傅立葉轉換紅外線光譜...........59
4.5 UHMWPE、UHMWPE/purified ATP和UHMWPE/acid treated ATP初絲樣品之熱學性質..62
4.6 UHMWPE、UHMWPE/purified ATP和UHMWPE/acid treated ATP初絲與延伸纖維樣品之分子順向度分析................................................................71
4.7 UHMWPE、UHMWPE/purified ATP和UHMWPE/acid treated ATP初絲樣品之可延伸性質73
4.8 UHMWPE、UHMWPE/purified ATP和UHMWPE/acid treated ATP初絲與延伸纖維樣品抗張性質........................................................................76
第五章 結論.................................................................80
參考文獻....................................................................83
1. P. Smith, P. J. Lemstra, J. Mater. Sci., 15, 505 (1980).
2. P. Smith, P. J. Lemstra and H. C. Booij, J. Mater. Sci., 19, 877 (1981).
3. J. Smook, A. J. Pennings, J. Mater. Sci., 19, 31 (1984).
4. P. Smith, P. J. Lemstra, J. P. L. Pippers and, A. M. Kiel, Coll. Polym. Sci., 258, 1070 (1981).
5. J. Bore, H. J. Vanden Berg and A. J. Pennings, Polymer, 25, 513 (1984).
6. M. Matsuo and R. St. J. Manley, Macromolecules, 15, 985 (1982).
7. T. Kanamoto, A. Tsuruta, K. tanaka, T. Takeda and R. S. Porter, Polym. J., 15, 327 (1983).
8. K. Furuhata, T. Yokokawa and K. Miyasaka, J. Polym. Sci., Polym. Phys. Ed., 22, 133 (1984).
9. A. Zhang, K. Chen, H. Zhao and Z. Wu, J. Appl. Polym. Sci., 38, 1369 (1989).
10. K. Chen, A. Zhang, P. Lu and Z. Wu, J. Appl. Polym. Sci., 38, 1377 (1989).
11. X. Wang. S. Li and R. Salovey, J. Appl. Polym. Sci., 35, 2165 (1988).
12. A. E. Zacharrriades and R. S. Porter, Ed., "The Strength and Stiffness of Polymer", Marcel Dekker, Inc., New Tork (1983).
13. N. Nakajima, J. Ibata, Japan Patents 57177035, 57177036, 57177037 (1983).
14. C. Sawatari, and M. Matsuo, Polymer, 30, 1603 (1989).
15. I. Simeonov, Z. Nikolova, P. Komitov, K. Naidenova, Bulgarian Patent 31,868 (1982).
16. M. Mihailov and L. Minkova, Coll. &; Polym. Sci., 265, 681 (1987).
17. Y. L. Huang and N. Brown, Polymer, 33, 2989 (1992).
18. J. T. Yeh, Y. L. Lin and C. C. Fan-Chiang, Macromol. Chem. Phys.,
197, 3531 (1996).
19. J. T. Yeh and H. C. Wu, Polym. J., 30, 1 (1998).
20. J. T. Yeh and S. S. Chang, J. Appl. Polym. Sci., 70, 149 (1998).
21. J. T. Yeh and S. S. Chang, J. Mater. Sci., 35, 3227 (2000).
22. J. T. Yeh and S. S. Chang, J. Appl. Polym. Sci., 79, 1890 (2001)
23. J. T. Yeh and S. S. Chang, Polym. Eng. Sci., 42, 1558 (2002).
24. J. T. Yeh, Y. T. Lin and K. N. Chen, J. Polym. Res., 10, 55 (2003).
25. J. T. Yeh, S. C. Lin, K. S. Huang and K. N. Chen, J. Appl. Polym. Sci., 110, 2538 (2008).
26. J. T. Yeh, Y. C. Lai, H. Liu, Polym. Int., 60, 59 (2011).
27. J. T. Yeh, T. W. Wu, Y. C. Lai, Q. C. Li, H. P. Zhou, Q. Zhou, Y. C. Shu, C.Y. Huang, K. S. Huang and K. N. Chen, Polym. Eng. Sci., 51, 2552 (2011).
28. J. T. Yeh, T. W. Wu, Y. C. Lai, H. P. Zhou, Q. Zhou, Q. C. Li, S. Wen, C. Y. Huang, K. S. Huang and K. N. Chen, Polym. Eng. Sci., 51, 687 (2011).
29. J. T Yeh, C. K. Wang, Q. Zhou, H. P. Zhou, Y. C. Lai, C. Y. Huang, and K. N. Chen, Ultradrawing Properties of “Ultra-highMolecular Weight Polyethylene Fibers Prepared Using Conical Dies with Varying Dimensions” Polym. Eng. Sci., submitted for publication.
30. T.Ohta, Polym. Eng. Sci., 13, 697 (1983).
31. J. T. Yeh, C. K. Wang, A. Yeh, L. K. Huang, W. H. Wang, Y. C. Lai, K. H. Hsieh, C. Y. Huang and K, N, Chen, Polym. Inter., in press, (2012).
32. J. T. Yeh, C. K. Wang, P. Hu, Y. C. Lai and F. C. Tsai, Polym. Int., in press (2012).
33. W. M. P:erkins, N. J. Capiati, and R. S. Porter, Polym. Eng. Sci., 16, 200 (1976).
34. A. E. Zahariades, T. Kanamoto and R. S. Porter, J. Polym. Sci., Polym. Phy. Ed., 18, 575 (1980).
35. D. M. Bigg, M. M. Epstein, R. J. Fiorentine and E. G. Smith, J. Appl. Polym. Sci., 26, 395 (1981).
36. W. Wu and W. B. Black, Polym. Eng. Sci., 19, 1169 (1979).
37. W. Wu, P. G. Simpson and W. B. Black, J. Polym. Sci., Polym. Phys. Ed., 18, 751 (1970).
38. W. N. Taylor and E. S. Clark, Polym. Eng. Sci., 18, 518 (1978).
39. E. S. Clark and L. S. Scott, Polym. Eng. Sci., 14, 682 (1974).
40. H. Kiho and K. Asai, Kobunshi Toronkai Preprint (Japan), 835 (1974).
41. M. Kamezawa, K. Yamada and M. Takayanagi, J. Appl. Polym. Sci., 24, 1227 (1979).
42. S. N. Zurkov, B. Ya. Levin and A. V. Savitskij, Dokl. Ahad. Nauk SSSR, 186, 32 (1969).
43. A. Zweinenburg, PhD thesis, State Univ. of Groningen (1978).
44. A. J. Pennings and C. J. H. Schouteten and A. M. Kiel, J. Appl. Polym. Sci., 167 (1972).
45. P. Smith, P. J. Lemstra, B. Kalb and A. J. Pennings, Polym. Bull., 1, 733 (1979).
46. J. Smook, C. J. Torf, P. F. VanHutten and A. J. Pennings, Polym. Bull., 2, 293 (1980).
47. P. J. Barham and A. Keller, J. Mater. Sci., 15, 2229 (1980).
48. Ray H. Baughman, A. A. Zakhidov, Walt. A. de Heer, Sci., C, 297 (2002).
49. J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. Kelley Bradley, P. J. Boul, A. Lu, R. E. Smalley, Science, 280, 1253(1998).
50. S. C. Tsang, P. J. F. Harris, M. L. H. Green, Nature, 362, 520(1993).
51. C. Tsang, Y. K. Chen, P. J. F. Harris, M. L. H. Green, Nature, 372, 159 (1995).
52. 周濟元, 崔炳芳. 澳大利亞凹凸棒石粘土礦床的分佈、類型、特徵及成因[J]. 資源調查與環境, 2009, 30 (1): 28 – 32
53. 閔毅松, 閔霖生, 程學剛, 等. 天然納米結構材料——江蘇盱眙凹凸棒土的特性及開發應用前景[J]. 納米材料在傳統產業中的應用, 2005
54. 周傑, 劉甯, 李雲, 等. 凹凸棒石粘土的顯微結構特徵[M]. 矽酸鹽通報, 1999 (6)
55. 須藤俊男. 粘土礦物學[M]. 嚴壽鶴, 等. 北京: 地質出版社, 1981: 9
56. Van Olphen H , Fripiat J J . Data Handbook for Clay Materials and Other Non - metallic Minerals[M]. NewYork: Pergamon Press , 1979
57. 彭書傳, 黃川微, 陳天虎, 等. 蘇皖沉積型坡縷石酸溶動力學研究[J]. 矽酸鹽學報, 2004, 32 (11): 1399 – 1404
58. 金葉玲, 陳靜, 錢運華, 等. 高純超細凹土製備的分散劑篩選分析[J]. 中國礦業, 2005, 14 (1) : 76 – 78
59. 熊余, 劉月, 鄭水林, 等. 凹凸棒石黏土酸洗提純工藝研究[J]. 非金屬, 2009, 32 (2): 23- 26
60. 呂東琴, 周仕學, 張同環, 等. 凹凸棒石的提純及改性對其吸附性能的影響[J]. 廣東化工, 2010, 37 (4): 58 – 60
61. 趙善宇, 王立久, 程正勇. 凹凸棒石粘土提純技術及性能研究[J]. 廣東建材研究與探討, 2005 (6)
62. 張智宏, 張少瑜, 劉雪東, 等. 不同活化條件對凹凸棒石黏土結構和特性的影響[J]. 精細化工, 2010, 27 (8): 733 – 737
63. 何國清. 開採沉陷學[M]. 徐州: 中國礦業大學出版社, 1994: 228 – 232
64. 趙萍, 姚瑩, 林峰, 等. 凹凸棒石改性方法及其應用現狀[J]. 化工生產與技術, 2006, 13 (5): 47- 55
65. 馬少健, 李長平, 陳建新. 微波焙燒活化膨潤土處理Cu2+ 廢水的研究[J]. 金屬礦山, 2004 (6): 56 - 60.
66. 朱湛, 王珂, 郭炳南, 等. 微波對鈣基膨潤土鈉化的影響[J]. 北京理工大學學報, 2001, 21 (5) : 645 – 647
67. Galan E. Properties and applications of palygorskite-sepiolite clays[J]. Clay Miner, 31 (4): 443 (1996)
68. Shariatmadari H, Mermut A R, Benke M B. Sorption of selected cationic and neut ral organic molecules on palygorskite and sepiolite[J]. Clays Clay Miner, 47 (1): 44 (1999)
69. Barrios M S ,Gonzalezl V F ,Rodriguezm A V. Acid activation of a palygorskite with HCl: development of physicochemical, textural and surface properties[J]. Appl Clay Sci, 10 (3): 247 (1995)
70. Yacaman J, et al. Maya blue paint: an ancient nanost ructured material[J]. Science, 273 (5272): 223 (1996)
71. Neaman A, Singer A. Rheological properties of aqueous suspensions of palygorskite[J]. Soil Sci Soc Am J, 64 (1): 427 (2000)
72. 詹庚申, 鄭茂松. 美國凹凸棒黏土開發應用淺議[J]. 非金屬礦, 2005, 28 (2): 36
73. 羊依金, 李志章, 張雪, 等. 坡縷石——鋼渣顆粒吸附劑處理含銅離子廢水的研究[J]. 工業廢水處理, 2006, 26 (11): 32- 35
74. 鄧愛軍. 凹凸棒土吸附水中鉻(VI)的研究[J]. 安徽化工, 1999, (3): 15- 16.
75. 王紅豔, 張豔, 周守勇, 等. 硫酸改性凹凸棒粘土的性能表徵及吸附Pb(Ⅱ) 工藝研究[J]. 淮陰師範學院學報, 2005, 4 (1): 47- 50
76. 許幹, 杜衛剛, 周偉, 等. 改性凹凸棒土淨化含鉻廢水的研究[J]. 2007, 21 (6): 58 – 60
77. 吳根, 羅人明. 改性殼聚糖絮凝劑VCG 的製備[J]. 水處理技術, 2001,27 (l): 39 – 41
78. 党明岩, 張廷安. 交聯殼聚糖的合成及其吸附處理廢水的研究進展[J]. 環境保護科學, 2004, 30 (4): 4 – 6
79. 劉維俊. 高分子殼聚糖對微量金屬離子的鼇合作用研究[J]. 環境科學與技術, 2003 (3): 11 – 12
80. 李瑜, 李為民, 姚超, 等. 季銨鹽改性凹凸棒土及處理含油廢水[J]. 非金屬礦, 2010, 33 (1): 58 – 60
81. 殷竟洲, 楊文瀾, 夏士朋. 殼聚糖改性凹凸棒土對重金屬離子的吸附[J]. 化工環保, 2007, 27 (3): 276 – 279
82. 全國礦產儲量委員會辦公室. 礦產一般工業手冊[M]. 北京: 地質出版社, 1987
83. 陳志剛, 郭亭亭, 李霞章, 等. 凹凸棒土負載CeO2催化氧化處理亞甲基藍染料廢水[J]. 功能材料, 2009, 40 (10): 1709 – 1712
84. 徐亞東. 改性凹凸棒土對常規淨水工藝的強化效應與機理研究[J]. 科技論壇, 2010
85. 于鵠鵬, 錢運華, 陳靜, 等. 利用凹凸棒土製備廢水氨氮吸附劑的研究[J]. 應用化工, 2009, 38 (8): 1194 – 1198
86. 黃韻, 馬曉燕. 矽酸鹽黏土及其聚合物基納米複合材料製備方法綜述[J]. 礦業研究與開發, 2005, 25 (2): 39 – 42
87. 肖春金, 田明, 張立群. 矽酸鹽納米纖維增強橡膠複合材料的結構與性能[J]. 複合材料學報, 2007, 24 (2): 83 – 84
88. 曾永斌, 姚超, 丁永紅, 等. 鹽酸摻雜聚苯胺/凹凸棒土納米導電複合材料的研究[J]. 非金屬礦, 2008, 31 (4) 53 – 56
89. 幸松民, 王一璐. 有機矽合成工藝及產品應用[M]. 北京: 化學工業出版社, 2000
90. Aziza T, Watersa M, Jagger R. Analysis of the properties of silicone rubber maxillofacial prosthetic materials[J]. Journal of Dentistry, 31 (1): 67 – 74 (2003)
91. Yoshimura K, Nakano K, Miyake T, et al. Effect of compressive and tensile strains on the electrical resistivity of carbon microcoil/silicone–rubber composites[J]. Carbon, 45 (10): 1997 – 2003 (2007)
92. 沈鐘, 褚翠英, 邵長生. 凹凸棒土的表面有機化改性及其在橡膠中的應用[J] . 化學工程師, 1996 (2): 3 – 5
93. 彭傳書. 凹凸棒石粘土橡膠填料改性研究[J]. 非金屬礦, 1998, 121(1): 15- 16
94. 金葉玲, 錢運華, 程曉春, 等. 改性白雲石凹凸棒土在橡膠中填充的可行性探討[J] . 南京理工大學學報, 2005, 29 (6): 720 – 723
95. 王益慶, 張立群, 張慧峰, 等. 凹凸棒土/橡膠納米複合材料結構和性能研究[J] . 北京化工大學學報(自然科學版) , 1999, 26 ( 3): 25 – 28
96. 王萍. 凹凸棒石/ 丁苯橡膠納米複合材料製備及其性能[J]. 非金屬礦, 2004, 27 (6): 8 – 10
97. Lai Shiquan, Li Tongs heng. A study on the friction and wear behavior of PTFE filled with acid treated nano-attapugite[J]. Macromolecular Materials and Engineering, 289 (10): 916 – 922 (2005)
98. Gao Xian , Mao Lixin, Tian Ming, et al. Preparati on and characterization of polycarbonate/poly (propylene) / attapulgite ternary nanocomposites with the morphology of encapsulation[J]. Macromolecular Materials and Engineering, 289 (9): 899 – 905 (2005)
99. Li An, Liu Ruifeng, Wang Aiqin. Preparation of starchgraftpoly (acrylam ide) / attapulgite superabsorbent composite[J]. Journal of Applied Polymer Science, 98 (3): 1351 – 1357 (2005)
100. 王平華, 徐國永. 聚丙烯/凹凸棒土納米複合材料的製備、結構與性能[J]. 高分子材料科學與工程, 2005, 21 (2): 213 – 216
101. 劉慶豐. 凹凸棒石粘土的改性及其在天然橡膠中的應用[J]. 彈性體, 2008, 18 (1): 31 – 34
102. 徐斌海, 張國慶, 姚超, 等. 凹凸棒土的表面處理及在矽橡膠中的應用研究[J]. 非金屬礦, 2009, 32 (2): 4 – 7
103. Payne A R. Rubber Chem. Technol., 44: 1207 (1971)
104. 丁永紅, 孫傳金, 姚超, 等. 凹凸棒土填充SBR的性能研究[J]. 橡膠工業, 2009, 56 (2): 91 – 94
105. Gillatt, Michael Biod iese. Green and sustainable[J]. Chemical Engineer, 781, 29 (2006)
106. 鄧德華, 張傳鎂. 氯氧鎂水泥製品吸潮返鹵原因及改善措施[J]. 新型建築材料. 1996 (12): 24 – 27
107. 段先志, 程友亮. 氯氧鎂水泥返鹵成因及其改進的研究[J]. 江西化工, 2001 (3): 11 – 15
108. 王薇, 李瑞, 嚴世強. 改性凹凸棒土用於製備生物柴油[J]. 遼寧化工, 2007, 36 (7): 433 – 438
109. 胡濤, 錢運華, 金葉鈴, 等. 凹凸棒土的應用研究[J].中國礦業, 2005, 14 (10): 73 – 76
110. 高軍,巴秋成. 關於對幹矽膠提高啤酒非生物穩定性的探討[J]. 釀酒, 1999, (3): 86 – 87
111. 錢俊青,謝祥茂. 稻殼吸附劑提高啤酒穩定性的研究[J]. 離子交換附, 2001, 17 (2): 145 – 151
112. 張丙雲, 李志忠. 凹凸棒土對啤酒穩定性的影響研究[J]. 釀酒科技, 2007 (7): 40 – 41
113. J. D. Hoffman, R. L. Miller, Polymer, 38, 3151 (1997).
114. J. D. Hoffman, J. J. Weeks, J. Res. Natl. Bur. Stand., 66, 13 (1962).
115. L. Boudriche, R. Calvet, B. Hamdi, H. Balard, Colloids and Surfaces A: Physicochemical and Engineering Aspects., 45, 392 (2011).
116.T. Ohta, Polym. Eng. Sci. 23, 697 (1983).
117.W. Hoogsteen, G. ten Brinke and A. J. Pennings, Colloid Polym. Sci. 266, 1003 (1988).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔