(3.238.240.197) 您好!臺灣時間:2021/04/12 01:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:廖紹宏
研究生(外文):Shao-Hong Liao
論文名稱:氧化石墨烯的光電特性與其結合聚乙二胺樹狀高分子/白金複合材料之製備以及應用於甲醇氧化反應之研究
論文名稱(外文):Spectroscopic properties and methanol oxidation applications of graphene oxide and its nanocomposites with pt nanocomposites encapsulated by PAMAM dendrimer
指導教授:今榮東洋子
指導教授(外文):Toyoko Imae
口試委員:今榮東洋子
口試日期:2012-07-06
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:66
中文關鍵詞:氧化石墨烯樹狀高分子直接甲醇燃料電池
外文關鍵詞:Graphene oxideDendrimerDirect-methanol fuel cells
相關次數:
  • 被引用被引用:0
  • 點閱點閱:161
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究目標為開發出氧化石墨烯與奈米白金結構之新穎電極材料,將其應用於直接甲醇燃料電池中,並採用循環伏安法於鹼性溶液甲醇氧化中測出其電催化活性,研究結果發現氧化石墨烯電極比純ITO電極於鹼性甲醇氧化反應上具有電流放大效果。為了更深入探討觸媒與氧化石墨烯的電流變化和毒化程度關係,實驗上是採用物理濺鍍方式製作出奈米尺度的白金薄膜,此法可控制其厚度與成膜狀態,並鍍製於已鋪上氧化石墨烯奈米薄膜的ITO玻璃上,成功地製作出三明治結構的新穎電極,其實驗結果均顯示有添加氧化石墨烯薄膜的電極擁有較佳的電流放大強度且無加深毒化程度的影響。另外,實驗上比較還原氧化石墨烯和氧化石墨烯之電化學反應,其結果卻發現電流的損失明顯增加,推測其原因可能為還原氧化石墨烯會與反應中間的產物吸附造成表面毒化所致。最後,實驗上也使用化學製作方式,以PAMMA dendrimer高分子合成出奈米白金顆粒並嵌於其內,之後鍵結於氧化石墨烯上製作出奈米複合材料,雖然此複合材料應用於電化學的實驗結果並無展現出甲醇氧化的效果,但此方法卻可建立一種高分子材料與氧化石墨烯鍵結的簡單製作方式。
本研究的另一部分則是探討氧化石墨烯的基本性質,以及分析氧化石墨烯與聚乙二胺樹狀高分子包覆白金奈米顆粒之複合材料的結構與鍵結方式,從TEM影像中可以發現樹狀高分子包覆住大小約1.2 nm的奈米級白金粒子,並藉由PH值和濃度的調控將適量的樹狀高分子與氧化石墨烯結合,其結果可經由TEM影像清楚看到樹狀高分子均勻的覆蓋在氧化石墨烯表面上。實驗上同時將複合材料使用FTIR與XPS進行分析,以及綜合探討氧化石墨烯表面的分子結構和複合材料的TEM結果,可推論出此複合材料於PH8.35下是以氧化石墨烯上的COO-與樹狀高分子的NH3+正負電鍵結,另外還參與了少部分氧化石墨烯環氧基群的開環共價鍵結合。
This research develop novel electrode material by graphene oxide (GO) and platinum nanoparticle for Direct Methanol Fuel cell (DMFC). We prepare nanoscale platinum film at Indium Tin Oxide (ITO) glass by DC-sputtering,and control Pt film thickness by sputtering time. Finally, we successfully get electrode of sandwich structure, and it was exmined by using cyclic noltammetry (CV) for oxideation of methanol. The results show that Indium tin oxide (ITO) electrode with GO has enhanced electric current property. In addition, we also compare with reduced graphene oxide (rGO). And study performance for foeware peak current and catalyst tolerance.The results show that GO is better than rGO. Due to rGO adsorption intermediate product in methanol oxideation reaction inducing rGO surface was polluted. We also use chemical method to make novel composites eletrode. First, the Pt nanoparticle was successfully synthesized on PAMAM dendrimer using reducing agent, and directly added to graphene oxide solution. However, the composites didn’t get good Electrochemical property for methanol oxidation. We believe that can use in other application, because it has simple synthesis process and Pt nanoparticles were uniformly dispersed on GO.
Another part of research, we study characteristic for graphene oxide and it composites (GO/Den(Pt)). To understand detail molecule structure of GO by Raman spectra and micro photo luminescence. The composites can find average size of Pt particles is 1.2 nm and homogeneous distribution of Pt particles on the graphene oxide surface by TEM image. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) confirm that the covalent bonds and eletrostatic interaction are introduced in the whole process.
摘要 I
目錄 II
圖目錄.......................................................................III
表目錄.......................................................................V
第一章 緒論.................................................................1
第二章 文獻回顧..............................................................3
2-1 燃料電池的簡介...........................................................3
2-1-1燃料電池的種類..........................................................3
2-1-2直接甲醇燃料電池的優點和應用............................................5
2-2直接甲醇燃料電池(Direct Methanol Fuel Cell, DMFC).........................5
2-2-1甲醇於鹼性溶液下的氧化反應..............................................6
2-2-2 DMFC的系統元件、架構...................................................7
2-3 新穎電極材料的開發與製作.................................................8
2-3-1碳奈米結構的應用........................................................9
2-3-2石墨烯/氧化石墨烯的結構與性質...........................................9
第三章 實驗方法與儀器介紹....................................................12
3-1實驗藥品..................................................................12
3-2實驗設備..................................................................13
3-3實驗方法..................................................................14
3-3-1 還原氧化石墨烯.........................................................14
3-3-2鉑奈米顆粒嵌入樹狀高分子結合氧化石墨烯之複合材料製備....................16
3-3-3 甲醇氧化實驗的製備.....................................................17
第四章 結果與討論............................................................20
4-1 氧化石墨烯和還原氧化石墨烯的特性分析.....................................20
4-1-1氧化石墨烯和還原石墨烯的分子結構........................................20
4-1-2不同還原時間還原氧化石墨烯的光電性質....................................24
4-2 氧化石墨烯與還原氧化石墨烯在甲醇氧化實驗之影響...........................29
4-2-1比較不同厚度的鉑金與加入氧化石墨烯在ITO電極的結果.......................29
4-2-2比較還原前後氧化石墨烯在ITO電極上的結果.................................38
4-3 樹枝狀高分子包覆鉑與氧化石墨烯結合之探討與其電化學應用...................42
4-3-1 複合材料的表面形態.....................................................42
4-3-2 複合材料的鍵結分析.....................................................46
4-3-3 應用於甲醇氧化實驗.....................................................52
第五章 結論..................................................................54
參考資料.....................................................................56
[1] Linda Carrette, K. Andreas Friedrich, Ulrich Stimming, ‘‘Fuel Cells: Principles, Types, Fuels, and Applications’’ CHEMPHYSCHEM 2000, 1, 162~193
[2] 核研所。行政院原子能委員會九十二年年報 (2003)
[3] Eileen Hao Yu, Keith Scott, Robert W. Reeve, ‘‘A study of the anodic oxidation of methanol on Pt in alkaline solutions’’, Journal of Electroanalytical Chemistry 547 (2003)
[4] Jacob S. Spendelow, Andrzej Wieckowski, ‘‘Electrocatalysis of oxygen reduction and small alcohol oxidation in alkaline media’’, Phys. Chem. Chem. Phys., 2007, 9, 2654–2675
[5] 肖鋼, ’’燃料電池技術’’, 2010, 全華圖書股份有限公司
[6] Hyung-Wook Ha, In Young Kim, Seong-Ju Hwang, and Rodney S. Ruoff i, ‘‘One-Pot Synthesis of Platinum Nanoparticles Embedded on Reduced Graphene Oxide for Oxygen Reduction in Methanol Fuel Cells’’, Electrochemical and Solid-State Letters, 14 (7) B70-B73 (2011)
[7] A. Hamnett, ‘‘Mechanism and electrocatalysis in the direct methanol fuel cell’’, Catalysis Today 38 (1997) 445-457
[8] Carol A. Bessel, Kate Laubernds, Nelly M. Rodriguez, and R. Terry K. Baker, ‘‘Graphite Nanofibers as an Electrode for Fuel Cell Applications’’, J. Phys. Chem. B, 2001, 105 (6), pp 1115–1118
[9] Wenzhen Li, Changhai Liang, Weijiang Zhou, Jieshan Qiu, Zhenhua Zhou, Gongquan Sun, and Qin Xin, ‘‘Preparation and Characterization of Multiwalled Carbon Nanotube-Supported Platinum for Cathode Catalysts of Direct Methanol Fuel Cells’’, J. Phys. Chem. B, 2003, 107 (26), pp 6292–6299
[10] Taeghwan Hyeon, Sangjin Han, Yung-Eun Sung, Kyung-Won Park, and Young-Woon Kim, ‘‘High-Performance Direct Methanol Fuel Cell Electrodes using Solid-Phase-Synthesized Carbon Nanocoils’’, Angew. Chem. Int. Ed. 2003, 42, 4352 –4356
[11] Yueming Li, Longhua Tang, Jinghong Li, ‘‘Preparation and electrochemical performance for methanol oxidation of pt/graphene nanocomposites’’, Electrochemistry Communications 11 (2009) 846–849
[12] Brian Seger and Prashant V. Kamat, ‘‘Electrocatalytically Active Graphene-Platinum Nanocomposites. Role of 2-D Carbon Support in PEM Fuel Cells’’, J. Phys. Chem. C, Vol. 113, No. 19, 2009
[13] EunJoo Yoo, Tatsuhiro Okata, Tornoki Akita, Masanori Kohyama, Junji Nakamura, and Itaru Honma, ‘‘Enhanced Electrocatalytic Activity of Pt Subnanoclusters on Graphene Nanosheet Surface’’, Nano Lett., Vol. 9, No. 6, 2009
[14] Rong Kou, Yuyan Shao, Donghai Wang, Mark H. Engelhard, Ja Hun Kwak, Jun Wanga, Vilayanur V. Viswanathan, Chongmin Wanga, Yuehe Lin, Yong Wanga, Ilhan A. Aksay, Jun Liu, ‘‘Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction’’, Electrochemistry Communications 11 (2009) 954–957
[15] M. Antonia Herrero, Javier Guerra, V. Sue Myers, M. Victoria Go′ mez, Richard M. Crooks, and Maurizio Prato, ‘‘Gold Dendrimer Encapsulated Nanoparticles as Labeling Agents for Multiwalled Carbon Nanotubes’’,ACS, VOL. 4 ▪ NO. 2 ▪ 905–912 ▪ 2010
[16] T. Maiyalagan, ‘‘Pt–Ru nanoparticles supported PAMAM dendrimer functionalized carbon nanofiber composite catalysts’’, J Solid State Electrochem (2009) 13:1561–1566
and their application to methanol oxidation
[17] Xiao Huang, Freddy Boey and Hu A Zhang, ‘‘A BRIEF REVIEW ON
GRAPHENE-NANOPARTICLE COMPOSITES’’, COSMOS, Vol. 6, No. 2 (2010) 159-166
[18] Anton Lerf, Heyong He, Michael Forster, and Jacek Klinowski, ‘‘Structure of Graphite Oxide Revisited’’, J. Phys. Chem. B 1998, 102, 4477-4482
[19] Yongjie Li, Wei Gao, Lijie Ci, Chunming Wang, Pulickel M. Ajayan, ‘‘Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation’’, Carbon, 48, (2010)1124-1130
[20] Songfeng Pei, Hui-Ming Cheng, ‘‘The reduction of grapheneoxide ’’, CARBON 50 (2012) 3210-3228
[21] Héctor A. Becerril, Jie Mao, Zunfeng Liu, Randall M. Stoltenberg, Zhenan Bao, and Yongsheng Chen, ‘‘Evaluation of Solution-Processed Reduced Graphene Oxide Films as Transparent Conductors’’,ACS NANO VOL. 2 NO. 3 463–470 2008
[22] Sasha Stankovich, Dmitriy A. Dikin, Richard D. Piner, Kevin A. Kohlhaas ,Alfred Kleinhammes, Yuanyuan Jia, Yue Wu,
SonBinh T. Nguyen, Rodney S. Ruoff, ‘‘Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide’’,
[23]A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, K. Geim, ‘‘Raman Spectrum of Graphene and Graphene Layers’’, Phys. Rev. Lett. 97 (2006) 187401.
[24] Peng-Gang Ren, Ding-Xiang Yan, Xu Ji, Tao Chen and Zhong-Ming Li, “Temperature dependence of graphene oxide reduced by hydrazine hydrate” Nanotechnology 22 (2011) 055705
[25] By Goki Eda, Yun-Yue Lin, Cecilia Mattevi, Hisato Yamaguchi, Hsin-An Chen, I-Sheng Chen, Chun-Wei Chen,* and Manish Chhowalla, “
Blue Photoluminescence from Chemically Derived Graphene Oxide”
Adv. Mater. 2009, 21, 1–5
[26] Ching-Yuan Su, Yanping Xu, Wenjing Zhang, Jianwen Zhao, Aiping Liu, Xiaohong Tang, Chuen-Horng Tsai, Yizhong Huang, and Lain-Jong Li, ‘‘Highly Efficient Restoration of Graphitic Structure in Graphene Oxide Using Alcohol Vapors’’, ACS NANO VOL. 4 ▪ NO. 9 ▪ 5285–5292 ▪ 2010
[27] Goki Eda, Yun-Yue Lin, Cecilia Mattevi, Hisato Yamaguchi, Hsin-An Chen, Sheng Chen, Chun-Wei Chen,* and Manish Chhowalla, ‘‘Blue Photoluminescence from Chemically Derived Graphene Oxide’’, Adv. Mater. 2009, 21, 1–5
[28] Yongjie Li, Wei Gao, Lijie Ci, Chunming Wang, Pulickel M. Ajayan, ‘‘Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation’’, CARBON 48 (2010) 1124–1130
[29] Kongkanand A, Vinodgopal K, Kuwabata S, Kamat PV, ‘‘Highly dispersed Pt catalysts on single-walled carbon nanotubes and their role in methanol oxidation’’, J Phys Chem B 2006;110(33):16185–8.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔