(3.230.173.249) 您好!臺灣時間:2021/04/18 07:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊仕鵬
研究生(外文):Shih-peng Yang
論文名稱:製備氧化亞銅奈米立方體觸媒並應用於非酵素型葡萄糖感測器
論文名稱(外文):Fabrication and applications of non-enzymatic glucose sensor based on nanocubic Cu2O electrochemical catalysts
指導教授:王孟菊
指導教授(外文):Meng-jiy Wang
口試委員:王孟菊
口試日期:2012-07-21
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:111
中文關鍵詞:氧化亞銅葡萄糖感測器非酵素型奈米觸媒
外文關鍵詞:Cu2Oglucose sensornon-enzymaticnanocatalysts
相關次數:
  • 被引用被引用:0
  • 點閱點閱:264
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以氧化亞銅奈米立方體做為非酵素型葡萄糖感測器的電化學觸媒,在氧化亞銅奈米立方體的製備方面,藉由合成時調控不同濃度之陽離子界面活性劑cetyltrimethylammonium bromide (CTAB),控制氧化亞銅顆粒的形狀及大小,再利用電化學的分析方法探討其催化葡萄糖的能力,並以材料的物理化學特性分析佐證電化學分析結果。此外,修飾於電極表面之金屬觸媒於感測時對許多電活性物質皆有催化能力,因此本研究以Nafion以及cellulose acetate (CA) 混合作為抗干擾層,修飾於電極表面,以增加感測器的選擇性,同時也對待測溶液pH值以及施加電位進行研究。
電化學分析主要是以循環伏安法以及計時安培法研究氧化亞銅奈米立方體催化葡萄糖的性能,並且以TEM、SEM、XRD、ESCA探討其顆粒大小、晶體結構以及表面化學組態。實驗結果發現,以CTAB濃度為0.04 M合成之氧化亞銅奈米立方體為最佳活性觸媒,並以Nafion:CA混合比例為0.5:0.5 (wt.%) 之配比為最適化之抗干擾層修飾電極。
本研究所製備之葡萄糖感測器於0.6 V vs. Ag/AgCl之施加電位下,具有感測葡萄糖線性範圍為0.5 - 9 mM (R2=0.997),此感測線性範圍下,偵測靈敏度可高達 202.36 μA mM-1 cm-2,且應答時間快 (<6 s),並同時具有高選擇性。本論文成功製備氧化亞銅奈米立方體之電化學觸媒,並應用於生物感測器之製程,成功製備具良好再現性及量測準確度、穩定性佳之高靈敏度非酵素型葡萄糖感測器。
Cuprous oxide (Cu2O) nanocubes were synthesized in this study as electrocatalysts for the non-enzymatic glucose sensing. The particles size and shape of Cu2O was controlled through adjusting the concentration of CTAB (cetyltrimethylammonium bromide) which is a cationic surfactant. The capability of catalyzing glucose was investigated by electrochemical analyses and physical-chemcial characterizations. Due to the problem of interference might be resulted from the metal catalysts which can react with electroactive substrates, this work mixed Nafion and cellulose acetate (CA) to serve as an anti-interference layer for the modification of the surface of electrodes and to increase the selectivity. Moreover, the pH value of the analytes and the applied potential were further studied.
The electrochemical analysis, mainly based on cyclic voltammetry and chronoamperometry method, investigated the performance of glucose catalyzing. The physical characteristics of the Cu2O nanocubes were studied by Transmission Electron Microscopy (TEM), Scanning Electron Microscope (SEM), X-Ray Diffraction (XRD), and Electron Spectroscopy for Chemical Analysis (ESCA). Finally, it was found that Cu2O nanocubes synthesized by using 0.04 M CTAB was the optimized concentration for catalyzing glucose, and the optimal ratio of Nafion:CA is 0.5:0.5 (wt.%) for the surface protection layer on the electrode.
The optimized amperometric biosensor covered a wide linear detection range of glucose, from 0.5 to 9 mM (R2=0.997), at 0.6 V vs. Ag/AgCl of applied potential. Moreover, a sensitivity of 202.36 μA mM-1 cm-2 and a rapid response time (<6 s) were obtained for the as-prepared non-enzymatic glucose sensor. We herein reported a glucose biosensor with surface decorated with Cu2O nanocubes for promising detection performance with good repeatability and high sensitivity.
摘要 I
ABSTRACT II
誌謝 III
目錄 V
圖索引 VIII
表索引 X
第一章、緒論 1
1-1、前言 1
1-2、葡萄糖生物感測器發展簡史 2
1-3、研究動機 4
第二章、文獻回顧 7
2-1、感測器簡介 7
2-2、化學感測器簡介 8
2-3、生物感測器簡介 9
2-3-1、生物感測器定義 9
2-3-2、生物感測器之基本結構與原理 9
2-3-3、生物感測器種類 11
2-3-3-1、依據固定化的生物分子分類 11
2-3-3-2、依據固定化的生物分子與待測生物樣本的結合方式分類 12
2-3-4、訊號換能器分類 14
2-4、電化學式生物感測器 16
2-4-1、電位式 (Potentiometric) 生物感測器 16
2-4-2、電流式 (Amperometric) 生物感測器 17
2-4-3、電導式 (Conductometric) 生物感測器 18
2-5、葡萄糖生物感測器 20
2-5-1、酵素型葡萄糖生物感測器 20
2-5-2、非酵素型葡萄糖感測器 26
2-6、奈米金屬顆粒 29
2-6-1、奈米材料之簡介 29
2-6-2、奈米顆粒之製備方法 30
2-6-3、奈米材料於葡萄糖生物感測器之應用 32
2-7、離子選擇膜 34
2-7-1、Nafion 35
2-7-2、Cellulose acetate 35
第三章、實驗方法 37
3-1、實驗設備 37
3-2、實驗藥品與溶液配製 38
3-2-1、實驗藥品 38
3-2-2、溶液配製 39
3-2-2-1、合成溶液配製 39
3-2-2-2、樣品溶液配製 39
3-3、實驗方法 40
3-3-1、氧化亞銅奈米立方體觸媒之合成方法 40
3-3-2、非酵素型葡萄糖感測器之製備 41
3-3-3、實驗架構 42
3-4、分析儀器與方法 43
3-4-1、感應偶合電漿放射光譜儀分析 (ICP-AES) 43
3-4-2、掃描式電子顯微鏡分析 (SEM) 43
3-4-3、穿透式電子顯微鏡分析 (TEM) 43
3-4-4、化學分析電子能譜 (ESCA) 43
3-4-5、X光繞射分析 (XRD) 44
3-4-6、紫外線/可見光分光光譜儀 (UV-vis) 45
3-5、電化學分析原理 46
3-5-1、電化學分析裝置 46
3-5-2、循環伏安法 (Cyclic Voltammetric method) 47
3-5-3、計時安培法 (Amperometric Method) 49
3-5-4、電化學阻抗分析法 49
第四章、結果與討論 53
4-1、奈米金屬觸媒之材料結構分析與電化學特性分析 53
4-1-1、ICP-AES 感應耦合電漿放射光譜分析 53
4-1-2、XRD晶體結構分析 54
4-1-3、奈米觸媒表面形態分析 (TEM, SEM) 55
4-1-4、UV-vis光譜分析 60
4-1-5、奈米觸媒表面化學組態分析 (ESCA) 62
4-1-6、觸媒之電化學特性分析 65
4-1-6-1、循環伏安法分析 65
4-1-6-2、葡萄糖滴定測試分析 72
4-2、抗干擾層修飾於葡萄糖感測器上之製程參數與電化學特性分析 74
4-2-1、掃描式電子顯微鏡分析 74
4-2-2、循環伏安法分析 76
4-2-3、電化學交流阻抗分析法 77
4-2-4、電活性物質干擾測試 79
4-3、施加電位之探討 83
4-3-1、電活性物質干擾測試 83
4-3-2、葡萄糖滴定測試分析 85
4-4、待測溶液PH值之探討 87
4-4-1、循環伏安法分析 87
4-4-2、葡萄糖滴定測試分析 88
4-5、非酵素型葡萄糖感測器之電化學性能分析 90
4-5-1、葡萄糖之偵測極限 90
4-5-2、電流之應答時間 90
4-5-3、葡萄糖滴定測試分析 92
4-5-4、穩定性測試 95
4-5-5、模擬血液測試 97
第五章、結論與未來方向 99
第六章、參考文獻 101
[1] Whiting D.R., Guariguata L., Weil C., Shaw J. IDF Diabetes Atlas: Global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Research and Clinical Practice. 2011;94:311-21.
[2] 台灣衛生署. 民國100年主要死因分析. 2011.
[3] Wang J. Electrochemical glucose biosensors. Chemical Reviews. 2008;108:814-25.
[4] Wang J. Glucose biosensors: 40 Years of advances and challenges. Electroanalysis. 2001;13:983-8.
[5] Clark Jr L.C., Lyons C. Electrode systems for continuous monitoring in cardiovascular surgery. Annals of the New York Academy of Sciences. 1962;102:29-45.
[6] Updike S.J., Hicks G.P. The Enzyme Electrode. Nature. 1967;214:986-8.
[7] Guilbault G.G., Lubrano G.J. An enzyme electrode for the amperometric determination of glucose. Analytica Chimica Acta. 1973;64:439-55.
[8] Cass A.E.G., Davis G., Francis G.D., Allen O Hill H., Aston W.J., John Higgins I., Plotkin E.V., Scott L.D.L., Turner A.P.F. Ferrocene-mediated enzyme electrode for amperometric determination of glucose. Analytical Chemistry®. 1984;56:667-71.
[9] Frew J.E., Hill H.A.O. Electrochemical biosensors. Analytical Chemistry. 1987;59:933 A-44 A.
[10] Hilditch P.I., Green M.J. Disposable electrochemical biosensors. Analyst. 1991;116:1217-20.
[11] Matthews D.R., Holman R.R., Bown E. Pen-sized digital 30-second blood glucose meter. Lancet. 1987;1:778-9.
[12] Murray R.W., Ewing A.G., Durst R.A. Chemically modified electrodes. Molecular design for electroanalysis. Analytical Chemistry. 1987;59:379A-90A.
[13] Degani Y., Heller A. Direct electrical communication between chemically modified enzymes and metal electrodes. 1. Electron transfer from glucose oxidase to metal electrodes via electron relays, bound covalently to the enzyme. Journal of Physical Chemistry. 1987;91:1285-9.
[14] Ohara T.J., Rajagopalan R., Heller A. "Wired" enzyme electrodes for amperometric determination of glucose or lactate in the presence of interfering substances. Analytical Chemistry. 1994;66:2451-4.
[15] Willner I., Heleg-Shabtai V., Blonder R., Katz E., Tao G., Bückmann A.F., Heller A. Electrical wiring of glucose oxidase by reconstitution of FAD-modified monolayers assembled onto Au-electrodes. Journal of the American Chemical Society. 1996;118:10321-2.
[16] Bindra D.S., Zhang Y., Wilson G.S., Sternberg R., Thévenot D.R., Moatti D., Reach G. Design and in vitro studies of a needle-type glucose sensor for subcutaneous monitoring. Analytical Chemistry. 1991;63:1692-6.
[17] Henry C. Getting under the skin: Implantable glucose sensors. Analytical Chemistry. 1998;70:594A-8A.
[18] Schmidtke D.W., Freeland A.C., Heller A., Bonnecaze R.T. Measurement and modeling of the transient difference between blood and subcutaneous glucose concentrations in the rat after injection of insulin. Proceedings of the National Academy of Sciences of the United States of America. 1998;95:294-9.
[19] Yi Q., Huang W., Yu W., Li L., Liu X. Hydrothermal synthesis of titanium-supported nickel nanoflakes for electrochemical oxidation of glucose. Electroanalysis. 2008;20:2016-22.
[20] Park S., Boo H., Chung T.D. Electrochemical non-enzymatic glucose sensors. Analytica Chimica Acta. 2006;556:46-57.
[21] Toghill K.E., Compton R.G. Electrochemical non-enzymatic glucose sensors: A perspective and an evaluation. International Journal of Electrochemical Science. 2010;5:1246-301.
[22] Shichiri M., Yamasaki Y., Abe H. Wearable artificial endocrine pancreas with needle-type glucose sensor. Lancet. 1982;2:1129-31.
[23] Wilson R., Turner A.P.F. Glucose oxidase: An ideal enzyme. Biosensors and Bioelectronics. 1992;7:165-85.
[24] Male K.B., Hrapovic S., Liu Y., Wang D., Luong J.H.T. Electrochemical detection of carbohydrates using copper nanoparticles and carbon nanotubes. Analytica Chimica Acta. 2004;516:35-41.
[25] Sun F., Li L., Liu P., Lian Y. Nonenzymatic Electrochemical Glucose Sensor Based on Novel Copper Film. Electroanalysis. 2011;23:395-401.
[26] Wu H.-X., Cao W.-M., Li Y., Liu G., Wen Y., Yang H.-F., Yang S.-P. In situ growth of copper nanoparticles on multiwalled carbon nanotubes and their application as non-enzymatic glucose sensor materials. Electrochimica Acta. 2010;55:3734-40.
[27] Yang J., Zhang W.-D., Gunasekaran S. An amperometric non-enzymatic glucose sensor by electrodepositing copper nanocubes onto vertically well-aligned multi-walled carbon nanotube arrays. Biosensors and Bioelectronics. 2010;26:279-84.
[28] Jiang L.-C., Zhang W.-D. A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modified carbon nanotube electrode. Biosensors and Bioelectronics. 2010;25:1402-7.
[29] Reitz E., Jia W., Gentile M., Wang Y., Lei Y. CuO Nanospheres Based Nonenzymatic Glucose Sensor. Electroanalysis. 2008;20:2482-6.
[30] Wang W., Zhang L., Tong S., Li X., Song W. Three-dimensional network films of electrospun copper oxide nanofibers for glucose determination. Biosensors and Bioelectronics. 2009;25:708-14.
[31] Zhuang Z., Su X., Yuan H., Sun Q., Xiao D., Choi M.M.F. An improved sensitivity non-enzymatic glucose sensor based on a CuO nanowire modified Cu electrode. Analyst. 2008;133:126-32.
[32] Zhang L., Li H., Ni Y., Li J., Liao K., Zhao G. Porous cuprous oxide microcubes for non-enzymatic amperometric hydrogen peroxide and glucose sensing. Electrochemistry Communications. 2009;11:812-5.
[33] El Khatib K.M., Abdel Hameed R.M. Development of Cu2O/Carbon Vulcan XC-72 as non-enzymatic sensor for glucose determination. Biosensors and Bioelectronics. 2011;26:3542-8.
[34] Li C., Su Y., Zhang S., Lv X., Xia H., Wang Y. An improved sensitivity nonenzymatic glucose biosensor based on a CuxO modified electrode. Biosensors and Bioelectronics. 2010;26:903-7.
[35] Zhang X., Wang G., Gu A., Wei Y., Fang B. CuS nanotubes for ultrasensitive nonenzymatic glucose sensors. Chemical Communications. 2008:5945-7.
[36] Gou L., Murphy C.J. Solution-phase synthesis of Cu2O nanocubes. Nano Letters. 2003;3:231-4.
[37] Zhang H., Shen C., Chen S., Xu Z., Liu F., Li J., Gao H. Morphologies and microstructures of nano-sized Cu2O particles using a cetyltrimethylammonium template. Nanotechnology. 2005;16:267-72.
[38] Lu J., Drzal L.T., Worden R.M., Lee I. Simple fabrication of a highly sensitive glucose biosensor using enzymes immobilized in exfoliated graphite nanoplatelets nafion membrane. Chemistry of Materials. 2007;19:6240-6.
[39] Sternberg R., Bindra D.S., Wilson G.S., Thévenot D.K. Covalent enzyme coupling on cellulose acetate membranes for glucose sensor development. Analytical Chemistry. 1988;60:2781-6.
[40] 黃炳照, 莊睦賢. 電化學感測器. 化工技術. 1999;第七卷.
[41] 黃興閎. 感測器於實車碰撞之應用. 車輛研測資訊. 2006.
[42] 陳冠榮. 以奈米金修飾電極製備電流式免疫型感測器. 國立台灣科技大學化學工程研究所碩士論文. 2008.
[43] 一之瀨昇, 小林哲二. 感測器原理與應用技術: 全華科技圖書股份有限公司; 1988.
[44] Electrochemical biosensors: Recommended definitions and classification (Technical Report). Pure and Applied Chemistry. 1999;71:2332-48.
[45] Walker J.M., Rapley R. 分子生物學與生物技術: 北京化學工業出版社; 2003.
[46] Turner A.P., Chen B., Piletsky S.A. In vitro diagnostics in diabetes: meeting the challenge. Clin Chem. 1999;45:1596-601.
[47] Castillo J., Gáspár S., Leth S., Niculescu M., Mortari A., Bontidean I., Soukharev V., Dorneanu S.A., Ryabov A.D., Csöregi E. Biosensors for life quality - Design, development and applications. Sensors and Actuators, B: Chemical. 2004;102:179-94.
[48] Diamond D. Principles of chemical and biological sensors. Chemical Analysis. 1998;150.
[49] 蘇宏基. 化學生物感測器. 東華大學化學系.
[50] Chaubey A., Malhotra B.D. Mediated biosensors. Biosensors and Bioelectronics. 2002;17:441-56.
[51] Mohanty S.P., Kougianos E. Biosensors: a tutorial review. Potentials, IEEE. 2006;25:35-40.
[52] 田蔚城. 生物技術的發展與應用: 九州圖書文物; 1997.
[53] 陳春吉. 自主性單層薄膜電極之阻抗分析與其在內毒素檢測上之應用. 國立成功大學醫學工程研究所碩士論文. 2002.
[54] 謝振傑. 光纖生物感測器. 物理雙月刊. 2006;第廿八卷.
[55] 許峰碩. 奈米碳黑在免疫層析檢測上的應用. 國立中興大學化學工程所碩士論文. 2002.
[56] Spichiger-Keller U.E. Chemical Sensors and Biosensors for Medical and Biological Applications: Wiley-VCH; 1998.
[57] Bard A.J., Faulkner L.R. Electrochemical Methods: Fundamentals and Applications. New York Wiley; 2001.
[58] 汪玉銘. 定電流聚合導電性高分子法製備葡萄糖生物感測器之研究. 國立成功大學化學工程所博士論文. 2003.
[59] 李家逢. 新穎鉑鈀多層壁奈米碳管之電化學觸媒於電流式葡萄糖感測器之製備與應用. 國立台灣科技大學化學工程研究所碩士論文. 2011.
[60] Yalcinkaya F., Powner E.T. Intelligent structures. Sensor Review. 1996;16:32-7.
[61] D'Orazio P. Biosensors in clinical chemistry. Clinica Chimica Acta. 2003;334:41-69.
[62] Kissinger P.T., Heineman W.R. Laboratory Techniques in Electroanalytical Chemistry. New York: Marcel Dekker.; 1996.
[63] Mehrvar M., Abdi M. Recent developments, characteristics, and potential applications of electrochemical biosensors. Analytical Sciences. 2004;20:1113-26.
[64] Shen J., Dudik L., Liu C.-C. An iridium nanoparticles dispersed carbon based thick film electrochemical biosensor and its application for a single use, disposable glucose biosensor. Sensors and Actuators B: Chemical. 2007;125:106-13.
[65] Moussy F., Jakeway S., Jed Harrison D., Rajotte R.V. In vitro and in vivo performance and lifetime of perfluorinated ionomer-coated glucose sensors after high-temperature curing. Analytical Chemistry. 1994;66:3882-8.
[66] Wang J., Wu H. Permselective lipid?掫oly(o-phenylenediamine) coatings for amperometric biosensing of glucose. Analytica Chimica Acta. 1993;283:683-8.
[67] Li J., Lin X. Glucose biosensor based on immobilization of glucose oxidase in poly(o-aminophenol) film on polypyrrole-Pt nanocomposite modified glassy carbon electrode. Biosensors and Bioelectronics. 2007;22:2898-905.
[68] Dong S., Wang B., Liu B. Amperometric glucose sensor with ferrocene as an electron transfer mediator. Biosensors and Bioelectronics. 1992;7:215-22.
[69] Ghica M.E., Brett C.M.A. Development of a carbon film electrode ferrocene-mediated glucose biosensor. Analytical Letters. 2005;38:907-20.
[70] Ming L., Xi X., Liu J. Electrochemically platinized carbon paste enzyme electrodes: A new design of amperometric glucose biosensors. Biotechnology Letters. 2006;28:1341-5.
[71] Zhang Z., Liu H., Deng J. A glucose biosensor based on immobilization of glucose oxidase in electropolymerized o-aminophenol film on platinized glassy carbon electrode. Analytical Chemistry. 1996;68:1632-8.
[72] Wang J., Liu J., Chen L., Lu F. Highly selective membrane-free, mediator-free glucose biosensor. Analytical Chemistry. 1994;66:3600-3.
[73] Comba F.N., Rubianes M.D., Herrasti P., Rivas G.A. Glucose biosensing at carbon paste electrodes containing iron nanoparticles. Sensors and Actuators B: Chemical. 2010;149:306-9.
[74] Derwinska K., Miecznikowski K., Koncki R., Kulesza P.J., Glab S., Malik M.A. Application of Prussian Blue Based Composite Film with Functionalized Organic Polymer to Construction of Enzymatic Glucose Biosensor. Electroanalysis. 2003;15:1843-9.
[75] Li T., Yao Z., Ding L. Development of an amperometric biosensor based on glucose oxidase immobilized through silica sol-gel film onto Prussian Blue modified electrode. Sensors and Actuators, B: Chemical. 2004;101:155-60.
[76] Zhao W., Xu J.-J., Shi C.-G., Chen H.-Y. Multilayer Membranes via Layer-by-Layer Deposition of Organic Polymer Protected Prussian Blue Nanoparticles and Glucose Oxidase for Glucose Biosensing. Langmuir. 2005;21:9630-4.
[77] Ferreira M., Fiorito P.A., Oliveira Jr O.N., Córdoba De Torresi S.I. Enzyme-mediated amperometric biosensors prepared with the Layer-by-Layer (LbL) adsorption technique. Biosensors and Bioelectronics. 2004;19:1611-5.
[78] Heller A. Electrical wiring of redox enzymes. Accounts of Chemical Research. 1990;23:128-34.
[79] Calvo E.J., Danilowicz C. Amperometric enzyme electrodes. Journal of the Brazilian Chemical Society. 1997;8:563-74.
[80] Ghindilis A.L., Atanasov P., Wilkins E. Enzyme-Catalyzed Direct Electron Transfer: Fundamentals and Analytical Applications. Electroanalysis. 1997;9:661-74.
[81] Vassilyev Y.B., Khazova O.A., Nikolaeva N.N. Kinetics and mechanism of glucose electrooxidation on different electrode-catalysts: Part I. Adsorption and oxidation on platinum. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry. 1985;196:105-25.
[82] Hsiao M.W., Adzic R.R., Yeager E.B. The effects of adsorbed anions on the oxidation of D-glucose on gold single crystal electrodes. Electrochimica Acta. 1992;37:357-63.
[83] Sakamoto M., Takamura K. Catalytic oxidation of biological components on platinum electrodes modified by adsorbed metals: Anodic oxidation of glucose. Bioelectrochemistry and Bioenergetics. 1982;9:571-82.
[84] Rong L.-Q., Yang C., Qian Q.-Y., Xia X.-H. Study of the nonenzymatic glucose sensor based on highly dispersed Pt nanoparticles supported on carbon nanotubes. Talanta. 2007;72:819-24.
[85] Song Y.Y., Zhang D., Gao W., Xia X.H. Nonenzymatic glucose detection by using a three-dimensionally ordered, macroporous platinum template. Chemistry - A European Journal. 2005;11:2177-82.
[86] Kurniawan F., Tsakova V., Mirsky V.M. Gold nanoparticles in nonenzymatic electrochemical detection of sugars. Electroanalysis. 2006;18:1937-42.
[87] Zhou Y.-G., Yang S., Qian Q.-Y., Xia X.-H. Gold nanoparticles integrated in a nanotube array for electrochemical detection of glucose. Electrochemistry Communications. 2009;11:216-9.
[88] Cui H.-F., Ye J.-S., Zhang W.-D., Li C.-M., Luong J.H.T., Sheu F.-S. Selective and sensitive electrochemical detection of glucose in neutral solution using platinum–lead alloy nanoparticle/carbon nanotube nanocomposites. Analytica Chimica Acta. 2007;594:175-83.
[89] You T., Niwa O., Chen Z., Hayashi K., Tomita M., Hirono S. An Amperometric Detector Formed of Highly Dispersed Ni Nanoparticles Embedded in a Graphite-like Carbon Film Electrode for Sugar Determination. Analytical Chemistry. 2003;75:5191-6.
[90] Chou C.-H., Chen J.-C., Tai C.-C., Sun I.W., Zen J.-M. A Nonenzymatic Glucose Sensor Using Nanoporous Platinum Electrodes Prepared by Electrochemical Alloying/Dealloying in a Water-Insensitive Zinc Chloride-1-Ethyl-3-Methylimidazolium Chloride Ionic Liquid. Electroanalysis. 2008;20:771-5.
[91] Lee Y.-J., Park D.-J., Park J.-Y., Kim Y. Fabrication and Optimization of a Nanoporous Platinum Electrode and a Non-enzymatic Glucose Micro-sensor on Silicon. Sensors. 2008;8:6154-64.
[92] Bai Y., Yang W., Sun Y., Sun C. Enzyme-free glucose sensor based on a three-dimensional gold film electrode. Sensors and Actuators B: Chemical. 2008;134:471-6.
[93] Deng Y., Huang W., Chen X., Li Z. Facile fabrication of nanoporous gold film electrodes. Electrochemistry Communications. 2008;10:810-3.
[94] Bai Y., Sun Y., Sun C. Pt–Pb nanowire array electrode for enzyme-free glucose detection. Biosensors and Bioelectronics. 2008;24:579-85.
[95] Cherevko S., Chung C.-H. Gold nanowire array electrode for non-enzymatic voltammetric and amperometric glucose detection. Sensors and Actuators B: Chemical. 2009;142:216-23.
[96] Yuan J., Wang K., Xia X. Highly ordered platinum-nanotubule arrays for amperometric glucose sensing. Advanced Functional Materials. 2005;15:803-9.
[97] Pletcher D. Electrocatalysis: present and future. Journal of Applied Electrochemistry. 1984;14:403-15.
[98] Hsiao M.W., Adžić R.R., Yeager E.B. Electrochemical oxidation of glucose on single crystal and polycrystalline gold surfaces in phosphate buffer. Journal of the Electrochemical Society. 1996;143:759-67.
[99] Vassilyev Y.B., Khazova O.A., Nikolaeva N.N. Kinetics and mechanism of glucose electrooxidation on different electrode-catalysts. Part II. Effect of the nature of the electrode and the electrooxidation mechanism. Journal of Electroanalytical Chemistry. 1985;196:127-44.
[100] A. Larew L., Johnson D.C. Concentration dependence of the mechanism of glucose oxidation at gold electrodes in alkaline media. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry. 1989;262:167-82.
[101] Burke L.D. Premonolayer oxidation and its role in electrocatalysis. Electrochimica Acta. 1994;39:1841-8.
[102] Lertanantawong B., O'Mullane A.P., Surareungchai W., Somasundrum M., Burke L.D., Bond A.M. Study of the underlying electrochemistry of polycrystalline gold electrodes in aqueous solution and electrocatalysis by large amplitude fourier transformed alternating current voltammetry. Langmuir. 2008;24:2856-68.
[103] Shiddiky M.J.A., O'Mullane A.P., Zhang J., Burke L.D., Bond A.M. Large amplitude fourier transformed AC voltammetric investigation of the active state electrochemistry of a copper/aqueous base interface and implications for electrocatalysis. Langmuir. 2011;27:10302-11.
[104] 王世敏, 許祖勛, 傅晶. 奈米材料原理與製備: 五南出版社; 2004.
[105] 馬振基. 奈米材料科技原理與應用: 全華科技圖書股份有限公司; 2005.
[106] Okitsu K., Bandow H., Maeda Y., Nagata Y. Sonochemical Preparation of Ultrafine Palladium Particles. Chemistry of Materials. 1996;8:315-7.
[107] Yu S.-H., Shu L., Yang J., Tang K.-B., Xie Y., Qian Y.-T., Zhang Y.-H. Benzene-thermal synthesis and optical properties of CdS nanocrystalline. Nanostructured Materials. 1998;10:1307-16.
[108] Antolini E., Cardellini F. Formation of carbon supported PtRu alloys: an XRD analysis. Journal of Alloys and Compounds. 2001;315:118-22.
[109] Watanabe M., Uchida M., Motoo S. Preparation of highly dispersed Pt + Ru alloy clusters and the activity for the electrooxidation of methanol. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry. 1987;229:395-406.
[110] Hamnett A., Kennedy B.J., Wagner F.E. Pt?悐u anodes for methanol electrooxidation: A ruthenium-99 Mössbauer study. Journal of Catalysis. 1990;124:30-40.
[111] Wang X., Hsing I.M. Surfactant stabilized Pt and Pt alloy electrocatalyst for polymer electrolyte fuel cells. Electrochimica Acta. 2002;47:2981-7.
[112] Liu Z., Lee J.Y., Chen W., Han M., Gan L.M. Physical and Electrochemical Characterizations of Microwave-Assisted Polyol Preparation of Carbon-Supported PtRu Nanoparticles. Langmuir. 2003;20:181-7.
[113] Zhang X., Chan K.-Y. Water-in-Oil Microemulsion Synthesis of Platinum−Ruthenium Nanoparticles, Their Characterization and Electrocatalytic Properties. Chemistry of Materials. 2002;15:451-9.
[114] 張義泉. 具界面活性擬樹枝狀聚乙烯亞胺之合成與製備燃料電池觸媒之應用. 國立成功大學化學工程研究所碩士論文. 2005.
[115] Pileni M.P., Ninham B.W., Gulik-Krzywicki T., Tanori J., Lisiecki I., Filankembo A. Direct Relationship Between Shape and Size of Template and Synthesis of Copper Metal Particles. Advanced Materials. 1999;11:1358-62.
[116] 裘性天, 黃亭凱. 特殊形貌銅與銀奈米材料製備之簡介. The Chinese Chemical Society, Taipei. 2007;65:9-16.
[117] 張澔洧, 張文翔, 游竣翔, 劉鎮維. 奈米級鉑材料的合成及應用. The Chinese Chemical Society, Taipei. 2007;65:27-33.
[118] Wang J., Rivas G., Chicharro M. Iridium-dispersed carbon paste enzyme electrodes. Electroanalysis. 1996;8:434-7.
[119] Kohma T., Oyamatsu D., Kuwabata S. Preparation of selective micro glucose sensor without permselective membrane by electrochemical deposition of ruthenium and glucose oxidase. Electrochemistry Communications. 2007;9:1012-6.
[120] Huang J., Wang D., Hou H., You T. Electrospun Palladium Nanoparticle-Loaded Carbon Nanofibers and Their Electrocatalytic Activities towards Hydrogen Peroxide and NADH. Advanced Functional Materials. 2008;18:441-8.
[121] Li G., Xu H., Huang W., Wang Y., Wu Y., Parajuli R. A pyrrole quinoline quinone glucose dehydrogenase biosensor based on screen-printed carbon paste electrodes modified by carbon nanotubes. Measurement Science and Technology. 2008;19.
[122] Xue C.H., Zhou R.J., Shi M.M., Wu G., Zhang X.B., Wang M., Chen H.Z. Electrochemistry of glucose oxidase immobilized on carbon nanotubes noncovalently functionalized by multihydroxyl and multicarboxyl groups. Journal of Electroanalytical Chemistry. 2010;642:92-7.
[123] Zhong H., Yuan R., Chai Y., Li W., Zhong X., Zhang Y. In situ chemo-synthesized multi-wall carbon nanotube-conductive polyaniline nanocomposites: Characterization and application for a glucose amperometric biosensor. Talanta. 2011;85:104-11.
[124] Si P., Kannan P., Guo L., Son H., Kim D.H. Highly stable and sensitive glucose biosensor based on covalently assembled high density Au nanostructures. Biosensors and Bioelectronics. 2011;26:3845-51.
[125] Barbadillo M., Casero E., Petit-Domínguez M.D., Vázquez L., Pariente F., Lorenzo E. Gold nanoparticles-induced enhancement of the analytical response of an electrochemical biosensor based on an organic-inorganic hybrid composite material. Talanta. 2009;80:797-802.
[126] Zhang S., Wang N., Yu H., Niu Y., Sun C. Covalent attachment of glucose oxidase to an Au electrode modified with gold nanoparticles for use as glucose biosensor. Bioelectrochemistry. 2005;67:15-22.
[127] Freeman R.G., Grabar K.C., Allison K.J., Bright R.M., Davis J.A., Guthrie A.P., Hommer M.B., Jackson M.A., Smith P.C., Walter D.G., Natan M.J. Self-assembled metal colloid monolayers: An approach to SERS substrates. Science. 1995;267:1629-32.
[128] Zayats M., Katz E., Baron R., Willner I. Reconstitution of Apo-Glucose Dehydrogenase on Pyrroloquinoline Quinone-Functionalized Au Nanoparticles Yields an Electrically Contacted Biocatalyst. Journal of the American Chemical Society. 2005;127:12400-6.
[129] Willner I., Baron R., Willner B. Integrated nanoparticle–biomolecule systems for biosensing and bioelectronics. Biosensors and Bioelectronics. 2007;22:1841-52.
[130] Yehezkeli O., Tel-Vered R., Raichlin S., Willner I. Nano-engineered Flavin-Dependent Glucose Dehydrogenase/Gold Nanoparticle-Modified Electrodes for Glucose Sensing and Biofuel Cell Applications. ACS Nano. 2011;5:2385-91.
[131] Zhang X., Wang G., Liu X., Wu J., Li M., Gu J., Liu H., Fang B. Different CuO Nanostructures: Synthesis, Characterization, and Applications for Glucose Sensors. The Journal of Physical Chemistry C. 2008;112:16845-9.
[132] Xia Y., Huang W., Zheng J., Niu Z., Li Z. Nonenzymatic amperometric response of glucose on a nanoporous gold film electrode fabricated by a rapid and simple electrochemical method. Biosensors and Bioelectronics. 2011;26:3555-61.
[133] Tumolo T., Nakamura M., Araki K., Baptista M.S. Effect of cations/polycations on the efficiency of formation of a hybrid bilayer membrane that mimics the inner mitochondrial membrane. Colloids and Surfaces B: Biointerfaces. 2012;91:1-9.
[134] Maines A., Ashworth D., Vadgama P. Diffusion restricting outer membranes for greatly extended linearity measurements with glucose oxidase enzyme electrodes. Analytica Chimica Acta. 1996;333:223-31.
[135] Wang J., Chen S.-P., Lin M.S. Use of different electropolymerization conditions for controlling the size-exclusion selectivity at polyaniline, polypyrrole and polyphenol films. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry. 1989;273:231-42.
[136] 陸瑞東. 以聯氨還原製備質子交換膜燃料電池鉑鎳碳陰極之研究. 國立成功大學化學工程研究所碩士論文. 2005.
[137] Gode P., Lindbergh G., Sundholm G. In-situ measurements of gas permeability in fuel cell membranes using a cylindrical microelectrode. Journal of Electroanalytical Chemistry. 2002;518:115-22.
[138] Eisenberg A., Yeager H.L. Perfluorinated ionomer membranes : developed in advance of the Polymer Division topical workshop on per-fluorinated ionomer membranes. Washington, D.C.: American Chemical Society; 1982.
[139] Jörissen J. Ion exchange membranes as solid polymer electrolytes (spe) in electro-organic syntheses without supporting electrolytes. Electrochimica Acta. 1996;41:553-62.
[140] Fan Z., Harrison D.J. Permeability of glucose and other neutral species through recast perfluorosulfonated ionomer films. Analytical Chemistry. 1992;64:1304-11.
[141] Lim S.H., Wei J., Lin J., Li Q., KuaYou J. A glucose biosensor based on electrodeposition of palladium nanoparticles and glucose oxidase onto Nafion-solubilized carbon nanotube electrode. Biosensors and Bioelectronics. 2005;20:2341-6.
[142] Ott E., Bikales N.M., Segal L. Cellulose and cellulose derivatives: Interscience Publishers; 1954.
[143] Gilbert R.D. Cellulosic Polymers, Blends, and Composites: Hanser Publishers; 1994.
[144] Cunningham D.D. Integration of compressed and composite immobilized enzyme membranes into an injection molded pin format by ultrasonic welding. Sensors and Actuators B: Chemical. 2002;87:371-8.
[145] Hart J.P., Wring S.A. Recent developments in the design and application of screen-printed electrochemical sensors for biomedical, environmental and industrial analyses. TrAC Trends in Analytical Chemistry. 1997;16:89-103.
[146] Prodromidis M.I., Karayannis M.I. Enzyme Based Amperometric Biosensors for Food Analysis. Electroanalysis. 2002;14:241-61.
[147] 胡啟章. 電化學原理與方法: 五南圖書出版公司; 2002.
[148] 彭文權. 以沈積法製備甲醇燃料電池用之Pt-Ru雙金屬觸媒. 元智大學化學工程研究所碩士論文. 1997.
[149] Eggins B.R. Chemical Sensors and Biosensors. New York Wiley; 2005.
[150] Chen Z., Jiang J., Shen G., Yu R. Impedance immunosensor based on receptor protein adsorbed directly on porous gold film. Analytica Chimica Acta. 2005;553:190-5.
[151] Macdonald J.R. Impedance spectroscopy: emphasizing solid materials and systems. New York Wiley; 1987.
[152] JCPOS No.05-0667.
[153] Jana N.R., Gearheart L.A., Obare S.O., Johnson C.J., Edler K.J., Mann S., Murphy C.J. Liquid crystalline assemblies of ordered gold nanorods. Journal of Materials Chemistry. 2002;12:2909-12.
[154] Hou J.-W., Yang X.-C., Cui M.-M., Huang M., Wang Q.-Y. Synthesis and optical property of one-dimensional Ag–Cu2O heterojunctions. Materials Letters. 2012;74:159-62.
[155] Dake L.S., King D.E., Czanderna A.W. Ion scattering and X-ray photoelectron spectroscopy of copper overlayers vacuum deposited onto mercaptohexadecanoic acid self-assembled monolayers. Solid State Sciences. 2000;2:781-9.
[156] Xie Y., Huber C.O. Electrocatalysis and amperometric detection using an electrode made of copper oxide and carbon paste. Analytical Chemistry. 1991;63:1714-9.
[157] Lee S.-H., Fang H.-Y., Chen W.-C. Amperometric glucose biosensor based on screen-printed carbon electrodes mediated with hexacyanoferrate–chitosan oligomers mixture. Sensors and Actuators B: Chemical. 2006;117:236-43.
[158] Wei H., Sun J.-J., Guo L., Li X., Chen G.-N. Highly enhanced electrocatalytic oxidation of glucose and shikimic acid at a disposable electrically heated oxide covered copper electrode. Chemical Communications. 2009:2842-4.
[159] Wang J., Zhang W.-D. Fabrication of CuO nanoplatelets for highly sensitive enzyme-free determination of glucose. Electrochimica Acta. 2011;56:7510-6.
[160] Anu Prathap M.U., Kaur B., Srivastava R. Direct synthesis of metal oxide incorporated mesoporous SBA-15, and their applications in non-enzymatic sensing of glucose. Journal of Colloid And Interface Science. 2012;381:143-51.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔