|
1.Chithrani, B.D., Ghazani, A.A., Chan, W.C.W., Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Letters, 2006. 6(4): p. 662-668. 2.Yen, H.J., Hsu S.H., Cytotoxicity and immunological response of gold and silver nanoparticles of different sizes. Small, 2009. 5: p. 1553-1561. 3.Arnida, M.M.J.-A., A. Ray, C.M. Peterson, H. Ghandehari, Geometry and surface characteristics of gold nanoparticles influence their biodistribution and uptake by macrophages. European Journal of Pharmaceutics and Biopharmaceutics, 2011. 77: p. 417-423. 4.F.E. Alemdaroglu, N.C.A., P. Langguth, A. Herrmann, Cellular uptake of DNA block copolymer micelles with different shapes. Macromolecular journals, 2009. 29(4): p. 326-329. 5.Parab H.J., C.H.M., Lai T.C., Huang J.H., Chen P.H., Liu R.S., Hsiao M., Chen C.H., Tsai D.P., Hwu Y.K., Biosensing, cytotoxicity, and cellular uptake studies of surface-modified gold nanorods. Journal of Physical Chemistry C, 2009. 113: p. 7574-7578. 6.T.K. Sau, C.J.M., Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir, 2004. 20: p. 6414-6420. 7.B. Nikoobakht, M.A.E.-S., Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Matter, 2003. 15: p. 1957-1962. 8.O.M. Bakr, B.H.W., F.Stellacci, High-yield synthesis of multi-branched urchin-like gold nanoparticles. Chem. Matter, 2006. 18: p. 3297-3301. 9.J.E. Millstone, G.S.M., C.A. Mirkin, Controlling the edge length of gold nanoprisms via a seed-mediated approach. Adv. Func. Matter, 2006. 16: p. 1209-1214. 10.Z.R. Shen, K.M., M. Higashimoto, T. Shimoda, M. Miyake, ingle-crystalline gold nanodisks prepared by the shape transformation under UV irradiation from nanoparticles protected with discotic liquid crystalline ligands Chem. Letter, 2008. 37(1276-1277). 11.C.G. Khoury, T.V.-D., Gold nanostars for surface-enhanced raman scattering: synthesis, characterization and optimization. Journal of Physical Chemistry C, 2008. 112: p. 11849-11859. 12.P.S. Kumar, I.P.-S., B. Rodriguez-Gonzalez, F.J. Garcia de Abajo, L.M. Liz-Marzan, High-yield synthesis and optical response of gold nanostars. Nanotechnology, 2008. 19(015606). 13.Tai Y., T.N.T.T., Tsai Y.C., Fang J.Y., Chang L.W., One-Step Synthesis of Highly Biocompatible Multi-Shaped Gold Nanostructures with Fruit Extract. IET Nanobiotechnol., 2011. 5: p. 52-59. 14.Eliza H., S.B., Simon L., Melanie L.H., Jasna K., Francoise M.W., Dusica M., Microglial Response to Gold Nanoparticles. ACS Nano, 2010. 4: p. 2595-2606. 15.International, A., Terminology for Nanotechnology, 2006. 16.Christian P., V.d.K.F., Baalousha M, Hofmann T., Nanoparticles: structure, properties, preparation and behaviour in environmental media. Ecotoxicology, 2008. 17: p. 326-343. 17.Nel A., X.T., Madler L., Li N., Toxic potential of materials at the nanolevel. Science, 2006. 311: p. 622-627. 18.Alberts B., J.A., Lewis J., Raff M., Roberts K. Walter P., Molecular Biology of The Cell. 5th ed2008, New York, USA: Garland Science. 19.Schmidbaur H., C.S., Djordjevic B., Schuster O., Understanding gold chemistry through relativity. Chemical Physics 2005. 311: p. 151-161. 20.Parab H.J., C.H.M., Bagkar N.C., Liu R.S., Hwu Y.K., Tsai D.P., Approaches to the Synthesis and Characterization of Spherical and Anisotropic Noble Metal Nanomaterials. Nanomaterials for the Life Science, ed. C. Kumar2009: Wiley-VCH. 21.Gardea-Torresdey J.L., P.J.G., Gomez E., Peralta-Videa J., Troian i H.E., Santiag P., Yacaman M.J., Formation and growth of au nanoparticles inside live alfalfa plants. Nano Letters, 2002. 2: p. 397-401. 22.Jorge L., T.G., Gomez E., Peralta-Videa J.R., Parsons J.G., Troiani H. and Yacaman M.J. , Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir, 2003. 19: p. 1357-1361. 23.Shankar S., A.A., Pasricha R., Sastry, M., Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. Journal of Materials Chemistry, 2003. 13: p. 1822-1826. 24.Shankar S.S., R., A., Ahmad, A. and Sastry, M., Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using neem (Azadirachta indica) leaf broth. Journal of Colloid and Interface Science, 2004. 275: p. 496-502. 25.Armendariz, V., Herrera, I., Peralta-Videa, J.R., Jose-Yacaman, M., Troiani, H., Santiago, P. and Gardea-Torresdey, J.L., Size controlled gold nanoparticle formation by Avena sativa biomass: use of plants in nanobiotechnology. Journal of Nanoparticle Research, 2004. 6: p. 377-382. 26.Shankar S.S., R.A., Ankamwar B., Singh A., Ahmad,A., Sastry M., Biological synthesis of triangular gold nanoprisms. Nature Materials, 2004. 3: p. 482-488. 27.Chandran, S.P., Chaudhary, M., Pasricha, R., Ahmad, A. and Sastry, M., Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnology Progress, 2006. 22: p. 577-583. 28.Sharma, N.C., Sahi, S.V., Nath, S., Parsons, J.G., Gardea – Torresdey, J.L. and Pal, T., Synthesis of plant-mediated gold nanoparticles and catalytic role of biomatrix-embedded nanomaterials. Environmental Science and Technology, 2007. 41: p. 5173-5142. 29.Huang J., L.Q., Sun D., Lu Y., Su Y., Yang X., Wang H., Wang Y., Shao W., He N., Hong J., Chen C., Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology, 2007. 18: p. 1-11. 30.Xie J., L.J.Y., Wang D.I.C., Ting Y.P., Identification of active biomolecules in the high-yield synthesis of single-crystalline gold nanoplates in algal solutions. Small, 2007. 3: p. 672-682. 31.Singaravelu, G.G., Arockiamary, J.S., Kumar, V.G. and Govindaraju, K., A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii. Colloids and Surfaces. B. Biointerfaces, 2007. 57: p. 97-101. 32.Lin J., Z.H., Chen Z., Zheng Y., Penetration of Lipid Membranes by Gold Nanoparticles: Insights into Cellular Uptake, Cytotoxicity, and Their Relationship. ACS Nano, 2010. 4: p. 5421-5429. 33.Cho E.C., X.J., Wurm P.A., Xia Y., Understanding the role of surface charges in cellular adsorption versus internalization by selectively removing gold nanoparticles on the cell Surface with a I2/KI etchant. Nano Letters, 2009. 9: p. 1080-1084. 34.Leroueil P.R., H.S., Mecke A., Baker J.R, Jr., Orr B.G., Holl M.M.B., Nanoparticle Interaction with Biological Membranes: Does Nanotechnology Present a Janus Face? Acc. Chem. Res., 2007. 40: p. 335. 35.Lu S., X.D., Huang G., Jing H.M., Wang Y., Gu H., Concentration Effect of Gold Nanoparticles on Proliferation of Keranocytes. Elsevier, 2010. 81: p. 406-411. 36.Gil P.R., O.G., Elder A., Puntes V., Parak W.J., Correlating Physico-Chemical with Toxicological Properties of Nanoparticles: The Present and the Future. ACS Nano, 2010. 4(10): p. 5527-5531. 37.Pan Y., N.S., Leifert A., Fischler M., Wen F., Simon U., Schmid G., Brandau W., Jahnen-Dechent W., Size-Dependent Cytotoxicity of Gold Nanoparticles. Small, 2007. 3: p. 1941-1949. 38.Tsoli M., K.H., Brandau W., Esche H., Schmid G., Cellular Uptake and Toxicity of Au55 Clusters. Small, 2005. 1: p. 841-844. 39.Chithrani B.D., C.W.C., Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Letters, 2007. 7: p. 1542-1550. 40.Jiang W., K.B.W., Rutka J.T., Chan W.C., Nanoparticle-mediated cellular response is size-dependent. Nat. Nanotechnol., 2008. 3: p. 145-150. 41.Jin H., H.D.A., Sharma R., Strano M.S., Size-Dependent Cellular Uptake and Expulsion of Single-Walled Carbon Nanotubes: Single Particle Tracking and a Generic Uptake Model for Nanoparticles. ACS Nano, 2009. 3: p. 149-158. 42.Barlett D.W., D.M.E., Physicochemical and biological characterization of targeted, nucleic acid-containing nanoparticles. Bioconjugate Chemistry, 2007. 18: p. 456-468. 43.Wei, A., Kim, B., Sadtler, B., Tripp, S.L., Tunable surface-enhanced Raman scattering from large gold nanoparticle arrays. Chemical Physics Chemistry, 2001. 2(12): p. 743-745. 44.Kneipp, K., Kneipp, H, Kneipp, J., Surface-enhanced raman scattering in local optical fields of silver and gold nanoaggregates - From single-molecule raman spectroscopy to ultrasensitive probing in live cells. Acc. Chem. Res., 2006. 39(7): p. 443-450. 45.C.M. Goodman, C.D.M., T. Yilmaz, V.M. Rotello, Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjugate Chemistry, 2004. 15(4): p. 897-900. 46.N. Uzunbajakava, A.L., Y. Kraan, E. Volokhina, G. Vrensen, J. Greve, Nonresonant confocal Raman imaging of DNA and protein distribution in apoptotic cells. Biophysical Journal, 2003. 84: p. 3968-3981. 47.C. Matthaus, S.B.-W., M. Miljkovi, M. Romeo, M. Diem, Raman and infrared microspectral imaging of mitotic cells. Appl Spectrosc, 2006. 60: p. 1-8. 48.Brabander M.D., N.R., Geuens G., Moremeans M., Mey J.D., The use of submicroscopic gold particles combined with video contrast enhancement as a simple molecular probe for the living cell. Cell Motility and the Cytoskeleton, 1986. 6: p. 105-113. 49.Durr N.J., L.T., Smith D.K., Korgel B.A., Sokolov K., Ben-Yakar A., Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods. Nano Letters, 2007. 7: p. 941-945. 50.Oyelere A., C.P.C., Huang X., El-Sayed I.H., El-Sayed M.A., Peptide-conjugated gold nanorods for nuclear targeting. Bioconjugate Chemistry, 2007. 18: p. 1490-1497. 51.Loo C., L.A., Halas N.J., West J., Drezek R., Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Letters, 2006. 5: p. 709-711. 52.El-Sayed I.H., H.X., El-Sayed M.A., Gold nanocages: biocoonjugation and their potential use as optical imaging contrast agents. Nano Letters, 2005. 5: p. 473-477. 53.Kim D., P.S., Lee J.H., Jeong Y.Y., Jon S., Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging. Journal of American Chemical Society, 2007. 129: p. 7661-7665. 54.Huang X., E.-S.I.H., Qian W., El-Sayed M.A., Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. Journal of American Chemical Society, 2006. 128: p. 2115-2120. 55.Chen S., W.Z.L., Ballato J., Foulger S.H., Carroll D.L. , Monopod, bipod, tripod, and tetrapod gold nanocrystals. Journal of American Chemical Society, 2003. 125: p. 16186-16187. 56.Chen J., W.D., Xi J., Au L., Siekkinen A., Warson A., Li Z.-Y., Zhang H., Xia Y., Li X., Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells. Nano Letters, 2007. 7: p. 1318-1322. 57.Hanahan D., W.R.A., Hallmarks of Cancer: The Next Generation. Cell, 2011. 144: p. 646-674. 58.Stein G.S., L.J.B., Wijnen A.J., Stein J.L., Montecino M., Javed A., Zaidi S.K., Young D.W., Choi J.Y., Pockwinse S.M., Runx2 control of organization, assembly and activity of the regulatory machinery for skeletal gene expression. Oncogene, 2004. 23: p. 4315-4329. 59.Reinholt F.P., H.K., Oldberg A., Heinegard D., Osteopontin--a possible anchor of osteoclasts to bone. Proc Natl Acad Sci USA, 1990. 87(12): p. 4473-4475. 60.Chen, H.M., Liu, R.S., Tsai D.P., A Versatile Route to the Controlled Synthesis of Gold Nanostructures. Crystal Growth and Design, 2009. 9: p. 2079-2087. 61.J. Sun, D.M., N. Zhang, X. Liu, X. Han, X. Bao, G. Weinberg, N. Pfander, D. Su, Toward monodispersed silver nanoparticles with unusual thermal stability. Journal of American Chemical Society, 2006. 128(39): p. 15756-15764. 62.Thaddeus J.N. Jr., C.D.G., Donny M., Jin Z.Z., Near Infrared Optical Absorption of Gold Nanoparticle Aggregates. Journal of Physical Chemistry B, 2006. 106(28): p. 7005-7012. 63.Luis M., L.M., Tailoring Surface Plasmons through the Morphology and Assembly of Metal Nanoparticles. Langmuir, 2006. 22(1): p. 32-41. 64.Gyoung H.J., Y.W.L., Minjung K., Sang W.H., High-yield synthesis of multi-branched gold nanoparticles and their surface-enhanced Rama scattering properties. Journal of Colloid and Interface Science, 2009. 329: p. 97-102. 65.T. Shimizu, T.T., S. Hasegawa, M. Miyake, Size evolution of alkanethiol-protected gold nanoparticles by heat treatment in the solid state. Journal of Physical Chemistry B, 2003. 107: p. 2719=2724. 66.Owen, T., Fundamentals of Modern UV-Visible Spectroscopy1996: Hewlett-Packard. 67.Angela F., B.P., Maria M., Christian S.E., Andrea H., Cristina F.L., Valeria G., Jesus M.F., Isabel P.S., Luis M.,L., Africa G., Sterilization matters: consequences of different sterilization techniques on gold nanoparticles. small, 2010. 6(1): p. 89-95. 68.Sweeney S., W.G., Hutchison J., Rapid purification and size separation of gold nanoparticles via diafiltration. Journal of American Chemical Society, 2006. 128: p. 3190-3197. 69.Rochelle R.A., O.R.M., Michael A.T., Christina M.P., Resham B., J.D., Robertson, Vincent M.R., Y.S. Prakash, Priyabrata M., Effect of nanoparticle surface charge at the plasma membrane and beyond. Nano Letters, 2010. 10: p. 2543-2548. 70.Ayush V., F.S., Effect of Surface Properties on Nanoparticle-Cell Interactions. Small, 2010. 6(1): p. 12-21. 71.A. Franceschetti, S.J.P., S. T. Pantelides, Oxygen chemisorption on Au nanoparticles. Chemical Physics Letters, 2003. 374(5-6): p. 471-475. 72.S.D. Puckett, J.A.H., J.D. Keith, W.U. Spendel, G.E. Pacey, Interaction of ozone with gold nanoparticles. Talanta, 2005. 66(5): p. 1242-1246. 73.J.K. Lung, J.C.H., D.C. Tien, C.Y. Liao, K.H. Tseng, T.T. Tsung, W.S. Kao, T.H. Tsai, C.S. Jwo, H.M. Lin, L. Stobinski, Preparation of gold nanoparticles by arc discharge in water. Journal of Alloys and Compounds, 2007. 434-435: p. 655-658. 74.M.R. Lorenz, V.H., A. Musyanovych, K. Nothelfer, P. Walther, H. Frank, Uptake of functionalized, fluorescent-labeled polymeric particles in different cell lines and stem cells. Biomaterials, 2006. 24(14): p. 2820-2828. 75.A.K. Gupta, A.S.G.C., Surface modified superparamagnetic nanoparticles for drug delivery: interaction studies with human fibroblasts in culture. J Mater Sci Mater Med, 2004. 15(4): p. 493-496. 76.Stephanie E.A.G., P.A.R., Patrick D.P., J.C. Luft, Victoria J.M., Mary E.N., Joseph M.D., The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci USA, 2008. 105(33): p. 11613-11618. 77.Feng Z., Y.Z., Ying L., Xueling C., Chunying C., Yuliang Z., Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. small, 2011. 7(10): p. 1322-1337. 78.Kyobum K., D.D., Anqi L., Antonios G.M., John P., Early osteogenic signal expression of rat bone marrow stromal cells is influenced by both hydroxyapatite nanoparticle content and initial cell seeding density in biodegradable nanocomposite scaffolds. Acta Biomaterialia, 2010. 7(3): p. 1249-1264. 79.Edward J., S.J.B., Meghan C., Anthony M.D., Yuri V., Yurii K.G., Nicholas A.K., High-content screening as a universal tool for fingerprinting of cytotoxicity of nanoparticle. ACS Nano, 2008. 2(5): p. 928-938. 80.Wenjuan C., J.L., Yakun Z., Huilin R., Wensheng L., Long J., Effects of aggregation and the surface properties of gold nanoparticles on cytotoxicity and cell growth. Nanomedicine: Nanotechnology, Biology and Medicine, 2011. 8(1): p. 46-53. 81.J. Carmichael, W.G.D., A.F. Gazdar, J.D. Minna, J.B. Mitchell, Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res., 1987. 47: p. 936-942. 82.X.L. Wei, Z.H.M., B. Li, J.M. Wei, Disruption of HepG2 cell adhesion by gold nanoparticle and Paclitaxel disclosed by in situ QCM measurement. Colloids and Surfaces B: Biointerfaces, 2007. 59: p. 100-104. 83.Owen T.A., A.M., Shalhoub V., Barone L.M., Wilming L., Tassinari M.S., Kennedy M.B., Pockwinse S., Lian J.B., Stein G.S., Progressive development of the rat oseteoblast phenotype in vitroL reciprocal relationships in gene expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix. J Cell Physiol, 1990. 143: p. 420-430. 84.Liu D.D., Z.J.C., Yi C.Q., Yang M.S., The effects of gold nanoparticles on the proliferation, differentiation, and mineralization function of MC3T3-E1 cells in vitro. Chinese Science Bulletin, 2009. 55(11): p. 1013-1019. 85.Ali S., J.H., Ahmet A.Y., Joseph I., Intracellular quantification by surface enhanced Raman spectroscopy. Chemical Physics, 2008. 461: p. 131-135. 86.Omer F.K., E.S., Omer Aydin, Mustafa C., Interaction of gold nanoparticles with mitochondria. Colloids and Surfaces B: Biointerfaces, 2009. 71: p. 315-318. 87.Shetty, G., Kendall, C, Shepherd, N, Stone, N., Barr, H. , Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus. British Journal of Cancer, 2006. 94: p. 1460-1464. 88.Chan, J.W., Taylor, D.S., Zwerdling, T., Lane, S.M., Ihara, K., Huser, T., Micro-raman spectroscopy detects individual neoplastic and normal hematopoietic cells. Biophysical Journal, 2006. 90: p. 648-656.
|