(3.227.235.183) 您好!臺灣時間:2021/04/13 09:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:沈子堯
研究生(外文):Tzu-yao Shen
論文名稱:低溫鋁擴散進入非晶矽形成P型層的技術及其在矽晶異質接合太陽能電池的製作應用
論文名稱(外文):Low-temperature Diffusion of Al into Amorphous Si Layers and its Application in Silicon Heterojunction Solar Cells fabrication
指導教授:洪儒生洪儒生引用關係
指導教授(外文):Lu-sheng Hong
口試委員:洪儒生
口試日期:2012-07-26
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:123
中文關鍵詞:電漿輔助化學氣相沉積氫化非晶矽鈍化異質接合太陽能電池
外文關鍵詞:plasma enhanced CVDa-Si:Haluminumlow-temperature thermal diffusionpassivationheterojunction solar cells
相關次數:
  • 被引用被引用:0
  • 點閱點閱:134
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
本研究係利用一低溫鋁擴散於非晶矽膜層使其形成p型多晶矽層之技
術,作為矽晶異質接合太陽電池製作之應用。以此技術製備p型膜層的實
驗結顯示,沉積厚度為30nm的非晶矽層與20nm厚的濺鍍鋁層接觸並經
200℃熱處理30分鐘後,可獲得電阻率為8.45×10-3 Ω-cm的結晶化p型膜
層。然而在矽晶片上以此p型層單面覆蓋時,矽晶片的有效載子生命週期
僅為20μs,暗示開路電壓為590mV;當改為局部的p型覆蓋時,在單面覆
蓋率為17%下,晶片有效載子生命週期為500μs,此時暗示開路電壓可維持
在685mV。利用全面低溫鋁擴散形成的p型層作為p型矽晶片異質接合太
陽電池元件的背電場,獲得元件的開路電壓、電流密度及填充因子分別為
591 mV、29.95 mA/cm2及71.45 %,光電轉換效率可達12.7%。
A process to form highly Al-doped crystalline Si layers through low-temperature diffusion of Al into hydrogenated amorphous Si (a-Si:H) layers was examined. We found that the conversion of a-Si:H into p+ crystalline Si for the Al/a-Si:H system is affected by the hydrogen incorporation amount of the a-Si:H layers, the thickness of the Al layers, the diffusion temperature, and the treatment time. A typical film resistivity of 8.45×10-3 Ω-cm was obtained after thermal treatment of Al (20nm)/amorphous Si(30nm) for 30 min under 200 oC. Applying the p+ layer thus prepared as the back surface field for p-type mono-crystalline Si hetero-junction solar cell, we achieved a primary cell efficiency of 12.7% on an untextured Si wafer with an open circuit voltage (Voc) of 590 mV. The low cell Voc is most plausibly due to the poor interface between the crystallized p+ doped layer and the Si surface. An attempt to passivate this interface was now underway.
摘要 ..........................................................................I
Abstract...................................................................................................... II
誌謝. ......................................................................................................... III
目錄. .......................................................................................................... V
圖索引 ................................................................................................... VIII
表索引 ................................................................................................... XIII
第一章 緒論 .......................................................................................... 1
1.1 前言 ............................................................................................. 1
1.2 高效率矽晶太陽能電池 ............................................................. 5
1.3 矽晶異質接合太陽能電池之光電轉換原理........................... 12
1.4 非晶矽薄膜的性質與成長機制 ............................................... 16
1.5 低溫鋁擴散原理 ....................................................................... 19
1.6研究目的與方向 ........................................................................ 22
第二章 實驗相關部分 ............................................................................ 23
2.1 實驗裝置 ................................................................................... 23
2.1-1 使用rf-PECVD系統成長本質層、p型及n型非晶矽薄膜 .......................................................................................... 23
2.1-2 使用磁控濺鍍系統成長透明導電玻璃薄膜 ............... 28
2.1-3使用磁控直流濺鍍系統成長鋁層薄膜 ........................ 30
2.1-4 使用高溫爐系統進行熱擴散製程 ............................... 32
2.2 實驗程序 ................................................................................... 33
2.2-1 矽晶基材之清洗 ........................................................... 33
2.2-2 玻璃基材的清洗 ........................................................... 35
2.2-3 異質接合太陽能電池之製作程序 ............................... 36
2.2-4 低溫鋁擴散太陽能電池之製作程序 ........................... 37
2.2-5低溫鋁擴散薄膜之製作程序 ........................................ 38
2.3 分析儀器 ................................................................................... 39
2.3-1表面形態輪廓儀 (surface profiler) ............................... 39
2.3-2 拉曼光譜儀(Raman) ..................................................... 40
2.3-3 紫外光/可見光光譜儀 (UV/VIS) ................................ 42
2.3-4 場發射掃瞄式電子顯微鏡 (field emission scanning electron microscope, FE-SEM) ...................................................... 45
2.3-5 X射線光電子能譜化學分析儀 (X-ray photoelectron spectroscopy) .................................................................... 46
2.3-6 霍爾量測儀 (Hall measurement) ................................. 47
2.3-7 電壓電流量測系統 (IV)............................................... 50
2.3-8 載子生命週期量測儀 (Lifetime tester) ....................... 51
2.3-9 太陽光模擬器 (solar simulator) ................................... 55
第三章 結果與討論 ................................................................................ 58
3.1低溫鋁擴散形成高摻雜p型膜層的製作參數 ........................ 58
3.1-1 氫化非晶矽薄膜製備時的氫氣稀釋比對形成p型層的影響 .......................................................................................... 59
3.1-2熱處理溫度對擴散層形成p形膜層的影響 ................ 69
3.1-3 鋁層厚度與熱處理時間對形成p型膜層的影響 ....... 77
3.2 低溫鋁擴散形成之p型膜層對矽晶片的鈍化效果及應用在矽晶太陽電池元件製備的特性 .................................................................. 85
3.2-1 整面之鋁擴散形成的p型膜層 ................................... 86
3.2-2 局部低溫鋁擴散形成的p型膜層 ............................. 97
第四章 結論 .......................................................................................... 102
作者簡介 ................................................................................................ 109
1. Source U.S. Energy information administration EIA.
2. KRI Report No. 8: Solar Cells, February 2005
3. European Photovolatic Industry Associsation EPIA
4. crystalline Si technology and manufacturing group, CTM
5. J. Zhao, A. Wang, and M. A. Green, Technical Digest of the international PVSEC-11, 557 (1999).
6. D. C. Marvin and S.L. Froedge, IEEE. CH278 I -3/89/OOOO-O82 1(1989).
7. M. D. Lammert, R.J. Schwartz, IEEE. Translations on Electron Devices ED-24, 337 (1977).
8. The website of SunPower Corporation
9. J.M. Gee, W.K. Schubert, and P.A. Basore, in Proceedings of the 23rd IEEE Photovoltaic Specialists Conference, Louisville, Kentucky, USA, 265-70 (1993).
10. J.M. Gee, M.E. Buck, W.K. Schubert, and P.A. Basore, in Proceedings of the 12th European Photovoltaic Solar Energy Conference, Amsterdam, The Netherlands, 743-6 (1994).
11. S. Hermann, et al., in Proceedings of the 22nd European Photovoltaic Solar Energy Conference, Milan, Italy, 970-5 (2007).
12. H. Knauss, H. Haverkamp, W. Jooss, S. Steckemetz, and H. Nussbaumer, Industrially applicable metallisation wrap through solar cell process resulting in efficiencies exceeding 16 %, in Proceedings of the 21st European Photovoltaic Solar Energy Conference, Dresden, Germany,
1192-5 (2006).
13. RASIRC-Steamer-Fraunhofer-ISES-MWT-PERC-Solar-Cell http://www.businesswire.com/news/home/20110526005390/en/
14. S. Taira, Y. Yoshimine, T. Baba, M. Taguchi, H. Kanno, T. Kinoshita, H. Sakata, E. Maruyama and M. Tanaka, 22nd EU-PVSEC 3-7 September, 2007 Milano, Italy.
15. S. Taira, Y. Yoshimine, T. Baba, M. Taguchi, H. Kanno, T. Kinoshita, H. Sakata, E. Maruyama and M. Tanaka, 22nd EU-PVSEC 3-7 September, 2007 Milano, Italy.
16. M. Tanaka, M. Taguchi, T. Matsuyama, T. Sawada, S. Tsuda, S. Nakano, H. Hanafusa, and Y. Kuwano, Jpn. J. Appl. Phys., Part 1, 31, 3518 (1992).
17. Sanyo Electric Co., US Patent 5213628, May 1993.
18. Sanyo Electric Co., US Patent 5935344, August 1999.
19. Sanyo Electric Co., US Patent 6878921, April 2005.
20. Sanyo Electric Co., US Patent 7030413, April 2006.
21. Sanyo Electric Co., US Patent 7164150, January 2007.
22. T. Kinoshita, D. Fujishima, A. Yano, A. Ogane, S. Tohoda, K. Matsuyama, Y. Nakamura, N. Tokuoka,H. Kanno, H. Sakata, M. Taguchi and E. Maruyama, 26th European Photovoltaic Solar Energy Conference and Exhibition (2011)
23. http://www.thefullwiki.org/P-n_junction
24. L.Korte, E. Conrad, et al.“Advances in a-Si:H/c-Si heterojunction solar cell fabrication and characterization. ” Solar Energy Materials and Solar Cells 3(6-7): 905-910.(2009).
25. S.Hanafusa and H.Kuwano, Y., “Developement of New a-si c-si Heterojunction Solar Cell Acj-Hit (Artificially Constructed Junction-Heterojunction with Intrinsic Thin Layer).” Japn J.Appl Phys Part 1-Regular Papers Short Notes & Review Papers, Vol. 31, No. 11, pp. 3518-3522 (1992).
26. M. Stutzmann, D. K. Biegelsen and R. A. Street, “Detailed investigation of doping in hydrogentated amorphous silicon and germanium,” Phys. Rev. B, Vol.35, pp.5666-5701 (1987).
27. M. H. Cohen, H. Fritzsche and S. R. Ovshinsky, “Simple band model for amorphous semiconducting Alloys,” Phys. Rev. Lett., Vol.22, pp.1065-1068 (1969).
28. D. E. Carson & C. R. Wronski, “Amorphous silicon Solar Cells,” Pennsylvania State University, USA (2007).
29. Satyen K. Deb, NREL/CP-590-28060(2000).
30. M.J. Keevers, T.L. Young, U. Schubert, and M.A. Green, Proc. Of the 22nd European Photovoltaic Solar Energy Conference, Milan, Italy (2007)
31. A.T. Voutsas, Appl. Surf. Sc 208/209(2003) .
32. G. Andra, J. Bergmann, A. Bochmann, F. Falk, A. Grawlik, E. Ose, J. Plentz, S. Dauwe, and T. Kieliba, Conference Record od the 2006 IEEE 4th Word Conference on Photovolatic Energy Conversion. Waikoloa, HI, USA, (2006) .
33. O. Nast and A. J. Hartmann, J. Appl. Phys. 88 (2000).
34. Y. Matsumoto and Z. Yu, Jpn. J. Appl. Phys. 40 (2001) .
35. J. Schneider, J. Klein, M. Muske, S. Gall, and W. Fuhs, Appl. Phys. Lett. 87 (2005).
36. T. J. Konno, and R. Sinclair, Philosophical Magazine B 66(1992).
37. T. J. Konno, and R. Sinclair, A. G. Cullis, A. E. Staton-Bevan, and J. L. Hutchison, Proceedings of the Royal Microscopical Society Conference (1993).
38. T. J. Konno, and R. Sinclair, Mater. Sci. Eng A 179/180 (1994).
39. P. Widenborg and A. G. Aberle, J. Cryst. Growth 242 (2002).
40. O. Nast and S.R. Wenham, J. Appl. Phys. 88 (2000).
41. Y. Hishikawa, M. Sasaki, S. Tsuge, S. Tsuda, Jpn. J. Appl. Phys. 33, 4373 (1994).
42. Y. Hishikawa, N. Nakamura, S. Tsuda, S. Nakano, Y. Kishi, Y. Kuwano, Jpn. J. Appl. Phys. 30, 1008 (1991).
43. Y. Hishikawa, S. Tsuge, N. Nakamura, S. Tsuda, S. Nakano, Y. Kuwano, J. Appl. Phys. 69, 508 (1991).
44. 施敏,半導體元件物理與製作技術,第二版,國立交通大學出版社,新竹市 (2002).
45. Sinton Consulting, WCT-120 Photoconductance Lifetime Tester and optional Suns-VOC Stage User Manual, www.sintonconsulting.com
46. R.A. Sinton, A. Cuevas, Appl. Phys. Lett. 69, 2510 (1996).
47. A. Cuevas, R.A. Sinton, Prog. Photovolt: Res. Appl. 5, 79 (1997).
48. D. Macdonald, R.A. Sinton, A. Cuevas, J. Appl. Phys. 89, 2772 (2001).
49. J. Nelson, The Physics of Solar Cells, Imperial College Press, London (2003).
50. Maruf Hossain, Husam H. Abu-safe, Hameed Naseem, and William D. Brown, “The Effects of Hydrogen on Aluminum-Induced Crystallization of Sputtered Hydrogenated Amorphous Silico” Journal of Electronic Materials, Vol. 35, No. 1,( 2006).
51. Maruf Hossain, Husam H. Abu-safe, Hameed Naseem, and William D. Brown, “Effect of stress on the aluminum-induced crystallization of hydrogenated amorphous silicon films” J. Mater. Res., Vol. 21, No. 10, ( 2006).
52. Kashish Sharma, “Towards poly-crystalline silicon thin film solar cells: on the microstructure and the crystallization kinetics of hydrogenated amorphous silicon”
53. P. Prathap n, O.Tuzun,D.Madi,A.Slaoui, “Thin film silicon solar cells by AIC on foreign substrates” Solar Energy Materials & Solar Cells 95 (2011).
54. T. Antesberger, C. Jaeger, M. Scholz, and M. Stutzmann, “ Structure and electronic properties of ultrathin polycrystalline Si layers on glass prepare by aluminum-induced layer exchange” J. Appl. Phys. 91, 201909 (2007).
55. M. S. Haque, H. A. Naseem, and W. D. Brown, “Aluminum-induced crystallization and counter-doping of phosphorousdoped hydrogenated amorphous silicon at low temperatures” J. Appl. Phys. 79 (10), 15 May (1996).
56. Yasuhiro Matsumoto amd Zhenrui Yu, “ P-type polycrystalline Si films prepared by aluminum-induced crystallization and doped method” Jpn J. Appl. Phys. Vol. 40 pp. 2110-2114 (2001).
57. Cheng Chang Peng, Chen Kuei Chung, Jen Fin Lin, “Effects of Al film thickness and annealing temperature on the aluminum-induced crystallization of amorphous silicon and carrier mobility” Acta Materialia 59 6093–6102. (2011) .
58. http://www.helmholtz-berlin.de/forschung/enma/si-pv/arbeitsgebiete/heteroemittersolarzellen/fragestellungen/grenzflaechen/index_en.html
59. Andre’s Cuevas, Paul A. Basore, Gae lle Giroult-Matlakowski, Christiane Dubois, “Surface recombination velocity of highly doped n-type silicon” J. Appl. Phys. 80 (6), (1996)
60. H. Plagwitz1, M. Nerding, N. Ott, H. P. Strunk and R. Brendel, “Low-Temperature Formationof Local Al Contacts to a-Si:H-passivated Si Wafers” Prog. Photovolt: Res. Appl. (2004)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 以非晶矽氧膜層作為矽晶異質接合鈍化層之程序探討
2. 低溫鋁擴散進入非晶矽形成P型層的技術及其在矽晶異質接合太陽能電池應用的研究
3. 具長波長光散射能力的新型TCO玻璃之開發及其在矽基薄膜太陽電池的應用
4. 低溫鋁擴散於氫化非晶矽層形成p型膜層及氫化氮化矽應用於矽晶片鈍化之研究
5. 以射頻矽甲烷電漿輔助化學氣相沉積法製備非晶矽薄膜太陽能電池元件之研究
6. 以射頻矽甲烷電漿輔助化學氣相沉積法製備非晶矽薄膜太陽能電池元件之研究
7. 利用高頻電漿輔助化學氣相沉積製備高效率非晶矽/非晶矽鍺雙接面太陽能電池研究
8. 非晶矽/非晶矽矽基堆疊型太陽能電池
9. 利用氫和氧電漿處理透明電極與低壓沉積本質非晶矽鍺吸光層改善非晶矽基合金薄膜太陽能電池的效能
10. 以摻鋁氧化鋅奈米線柱型陣列研製共軸非晶矽 p-i-n 太陽能電池之研究
11. 以矽奈米柱型陣列研製共軸非晶矽p-i-n太陽能電池之研究
12. 以氫化非晶氧化矽膜層作為矽晶異質接合太陽能電池鈍化層的效應探討
13. 使用電子迴旋共振化學氣相沉積製備異質接面太陽能電池表面鈍化氫化非晶矽薄膜之製程參數研究
14. 以電漿輔助化學氣相沉積系統研製非晶矽及矽鍺薄膜太陽能電池
15. 以高密度化學氣相沉積系統製備非晶矽及多晶矽太陽能電池之薄膜特性分析
 
系統版面圖檔 系統版面圖檔