跳到主要內容

臺灣博碩士論文加值系統

(44.221.73.157) 您好!臺灣時間:2024/06/17 21:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳晏彰
研究生(外文):Yan-Jhang Chen
論文名稱:寬輸出電壓調節範圍之30 kV高壓直流電源供應器研製
論文名稱(外文):Study and Implementation of a 30 kV High-voltage DC Power Supply with a Wide-range of Adjustable Output Voltage
指導教授:羅有綱邱煌仁
指導教授(外文):Yu-Kang LoHuang-Jen Chiu
口試委員:羅有綱邱煌仁
口試日期:2012-01-09
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:131
中文關鍵詞:降壓式電流饋入型推挽式轉換器寬輸出電壓調節範圍高壓直流
外文關鍵詞:buck current-fed push-pull converterwide-range of adjustable output voltagehigh voltage DC
相關次數:
  • 被引用被引用:1
  • 點閱點閱:790
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文主要研製一「寬輸出電壓調節範圍之30 kV高壓直流電源供應器」。功率級架構分為兩級,前級使用邊界電流導通模式之功率因數修正電路,用以提高電路的功率因數並且提供穩定直流輸出380 V電壓供給後級使用。後級為DC/DC轉換器,架構選用降壓式電流饋入型推挽式轉換器,二次側使用倍壓電路,用以提供5 ~ 30 kV高壓輸出、額定功率100 W。電路的輔助電源,架構選用返馳式轉換器,其輸出兩組15 V/0.2 A與一組5 V/2 A電源提供控制級電路使用。論文內容包含高壓電源供應器操作原理與設計考量的探討與分析,最後研製之硬體規格雛形電路由實驗結果得到驗證其可行性。
This thesis mainly develops a 30 kV high-voltage DC power supply with a wide-range of adjustable output voltage. The power stage consists of a power factor corrector (PFC) and a buck current-fed push-pull DC-DC converter. The pre-stage PFC circuit is operated at boundary current conduction mode (BCM) to achieve high input power factor and provide a 380 V regulated DC voltage to the post-stage circuit. The buck current-fed DC-DC converter with a secondary voltage multiplier provides a high-voltage output from 5 kV to 30 kV with a rated power of 100W. A flyback converter is designed as the auxiliary power supply to provide two sets of 15V/0.2A and a 5V/2A for control stage. In this thesis, the operation principles and design considerations for the studied high-voltage power supply are discussed and analyzed. A laboratory prototype circuit is built and tested. The experimental results are shown to verify the feasibility of the proposed scheme.
摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖索引 viii
表索引 xii
第一章 緒論 1
1.1 研究動機及目的 1
1.2 研究內容 2
1.3 論文內容大綱 4
第二章 功率因數修正原理 5
2.1 功率因數之定義 5
2.2 功率因數修正器之優點與分類 11
2.2.1 功率因數修正之優點 11
2.2.2 功率因數修正器之分類 12
2.3 升壓型PFC電路架構 14
2.4 升壓型PFC之操作模式 15
2.5 PFC控制器之控制方法 16
2.5.1 電壓隨耦控制法 16
2.5.2 乘法器控制法 17
2.5.3 遲滯電流控制法 19
2.5.4 峰值電流控制法 20
2.5.5 平均電流控制法 21
2.5.6 PFC控制器之控制方法整理 23
第三章 高壓直流轉換器之電路架構 25
3.1 全橋式轉換器 25
3.1.1 傳統全橋式轉換器 25
3.1.2 降壓式電壓饋入型全橋式轉換器 29
3.1.3 降壓式電流饋入型全橋式轉換器 31
3.1.4 全橋式諧振轉換器 33
3.2 推挽式轉換器 35
3.2.1 傳統推挽式轉換器 35
3.2.2 降壓式電流饋入型推挽式轉換器 38
3.2.3 推挽式諧振轉換器 40
3.3 返馳式電流饋入型推挽式轉換器 41
3.3.1 二次側輸出連接型 41
3.3.2 二次側輸入連接型 44
3.4 輸出整流濾波電路與倍壓電路 47
3.5 降壓式電流饋入型推挽式轉換器動作原理分析 52
3.5.1 基本動作原理 52
3.5.2 電壓轉換比 60
第四章 返馳式轉換器原理簡介 62
4.1 返馳式轉換器操作原理 62
4.1.1 操作狀態分析 62
4.1.2 連續導通模式下之電壓轉換比M(d) 65
4.1.3 轉換效率 66
4.2 理想條件下連續與不連續導通模式之差異 67
4.3 非理想條件下連續與不連續導通模式之差異 68
第五章 硬體設計考量 71
5.1 邊界導通模式升壓型PFC電路設計 71
5.1.1 控制IC L6561介紹 71
5.1.2 功率級元件設計 73
5.2 降壓式電流饋入型推挽式轉換器電路設計 78
5.2.1 控制IC UC3827-1介紹 78
5.2.2 功率級元件設計 81
5.3 返馳式轉換器電路設計 84
5.3.1 控制IC TNY280介紹 84
5.3.2 功率級元件設計 85
第六章 實驗結果與模擬 89
6.1 BCM BOOST PFC模擬與測試結果 89
6.1.1 SIMPLIS軟體模擬 89
6.1.2 實測結果 90
6.1.3 量測數據與效率 95
6.2 降壓式電流饋入型推挽式轉換器模擬與測試結果 97
6.2.1 SIMPLIS軟體模擬 97
6.2.2 實驗結果 98
6.2.3 量測數據與效率 101
6.3 輔助電源模擬與測試結果 102
6.3.1 SIMPLIS軟體模擬 102
6.3.2 實驗結果 103
6.3.3 量測數據與效率 104
6.4 系統啟動電路與CAN Bus 105
6.5 「靜電鍍膜機」整機實測結果 106
第七章 結論與未來展望 110
7.1 結論 110
7.2 未來展望 111
參考文獻 112
[1] J. Sun, X. Ding, M. Nakaoka and H. Takano, “Series resonant ZCS-PFM DC-DC converter with multistage rectified voltage multiplier and dual-mode PFM control scheme for medical-use high-voltage X-ray power generator,” IET Trans. Electric Power Applications, vol. 147, no. 6, pp. 527-534, Nov. 2000.
[2] S. Iqbal, G. K. Singh and R. Besar, “A dual-mode input voltage modulation control scheme for voltage multiplier based X-ray power supply,” IEEE Trans. Power Electronics, vol. 23, no. 2, pp. 1003-1008, March 2008.
[3] S. Iqbal, R. Besar and C. Venkataseshaiah, “Single/three-phase symmetrical bipolar voltage multipliers for X-ray power supply,” presented at the IEEE 2nd ICEE’08, University of Engineering and Technology, Lahore, Pakistan, March 25-26, 2008.
[4] 自動化在線Autooo.net, 一種120 kV電子束焊機用的高壓直流電源裝置, 2011: http://www.autooo.net/utf8-classid151-id41006.html
[5] G. D. Mohanraj, “A need to review total harmonic distortion measurement in power system,” in Proc. IEEE Power Quality’98, 1998, pp. 151-155.
[6] Y. Jang, D. L. Dillman and M. M. Jovanović, “A new soft-switched PFC boost rectifier with integrated flyback converter for stand-by power,” IEEE Trans. Power Electronics, vol. 21, no. 1, pp. 66-72, Jan. 2006.
[7] L. Huber, Y. Jang and M. M. Jovanović, “Performance evaluation of bridgeless PFC boost rectifiers,” IEEE Trans. Power Electronics, vol. 23, no. 3, pp. 1381-1390, May 2008.
[8] F. Yang, X. Ruan, Y. Yang and Z. Ye, “Interleaved critical current mode boost PFC converter with coupled inductor,” IEEE Trans. Power Electronics, vol. 26, no. 9, pp. 2404-2413, Sept. 2011.
[9] T. J. Liang, R. Y. Chen, J. F. Chen and W. J. Tzeng, “buck-type current-fed push-pull converter with ZCS for high voltage applications,” presented at the TENCON 2007-2007 IEEE Region 10 Conference, Oct. 30-Nov. 2, 2007.
[10] J. M. Alonso, C. Ordiz, D. Gacio, J. Ribas and A. J. Calleja, “Closed-loop regulated power supply for ozone generation based on buck converter and current-fed push-pull resonant inverter,” presented at the IEEE EPE’09, Sept. 8-10, 2009.
[11] X. Gao and R. Ayyanar, “A high-performance, integrated magnetics scheme for buck-cascaded push-pull converter,” IEEE Trans. Power Electronics Letters, vol. 2, no. 1, pp. 29-33, March 2004.
[12] G. M. Ponzo, G. Capponi, P. Scalia and V. Boscaino, “An improved flyback converter,” in Proc. IEEE ECTI-CON, May 2009, pp. 310-313.
[13] 王晨星, CAN BUS的原理與應用, 2011: http://www.leaptronix.com/PDF/LA%20series%20bus.pdf
[14] N. Mohan, T. M. Undeland and W. P. Robbins, “Power Electronics Converters, Applications and Design,” John Wiley & Sons Inc., 3rd Edition, 2003.
[15] 陳冠廷,「具功率因數修正器關閉功能之雙模式返馳式轉換器研製」,國立臺灣科技大學電子工程系研究所碩士論文,民國99年。
[16] 柯祈佑,「高效能非對稱半橋轉換器研製」,國立臺灣科技大學電子工程系研究所碩士論文,民國98年。
[17] 林立,「300 W個人電腦電源供應器之實現與分析」,國立臺灣科技大學電子工程系研究所碩士論文,民國99年。
[18] EPARC,「電力電子學綜論」,全華科技圖書出版,民國97年2月。
[19] A. I. Pressman, K. Billings and T. Morey, “Switching Power Supply Design,” McGraw-Hill, 3rd Edition, 2009.
[20] C. Iannello, S. Luo and I. Batarseh, “Full bridge ZCS PWM converter for high-voltage high-power applications,” IEEE Trans. Aerospace and Electronic Systems, vol. 38, no. 2, pp. 515-526, April 2002.
[21] J. F. Chen, R. Y. Chen and T. J. Liang, “Study and implementation of a single-stage current-fed boost PFC converter with ZCS for high voltage applications,” IEEE Trans. Power Electronics, vol. 23, no. 1, pp. 379-386, Jan. 2008.
[22] W. C. Chen, T. J. Liang, L. S. Yang and J. F. Chen, “Current-fed DC-DC converter with ZCS for high voltage applications,” in Proc. IEEE IPEC, June 2010, pp. 58-62.
[23] W. A. Peterson and S. L. Plaskon, “Dual charge mode control of a current fed boost-buck push pull converter,” in Proc. IEEE Industry Applications Conference, Oct. 1998, vol. 2, pp. 1596-1603.
[24] STMicroelectronics, “L6561 Power Factor Corrector,” Data Sheet, 1999.
[25] TDK, “TDK Ferrite Cores in Switching Power Supplies,” Data Sheet, 2005.
[26] STMicroelectronics, “AN966 Application Note,” Application Mote, 2001.
[27] Texas Instruments, “Buck Current/Voltage Fed Push-Pull PWM Controllers (UC3827-1),” Data Sheet, 2005.
[28] Power Integrations, Inc., “TNY274-280 TinySwitch-III Family,” Data Sheet, 2006.
[29] STMicroelectronics, “Positive Voltage Regulators L7800 Series,” Data Sheet, 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top