(3.235.25.169) 您好!臺灣時間:2021/04/20 01:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:彭翰晨
研究生(外文):Han-chen Peng
論文名稱:陽極層離子源反應式濺鍍沉積摻氮氧化鋅薄膜之特性
論文名稱(外文):Nitrogen doped ZnO thin films prepared by anode layer ion source reactive ion beam sputter deposition
指導教授:趙良君
指導教授(外文):Liang-chiun Chao
口試委員:趙良君
口試日期:2012-06-15
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:70
中文關鍵詞:陽極層離子源摻氮氧化鋅活化能電漿光譜
外文關鍵詞:Anode layer ion sourceNitrogen doped ZnOActivation energyPlasma emission spectrum
相關次數:
  • 被引用被引用:0
  • 點閱點閱:67
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗使用反應式離子束濺鍍法沉積摻氮氧化鋅薄膜,採用陽極層離子源同時通入氬氣以及氮氣,以氧化鋅為靶材,成功的製備出摻氮氧氧化鋅薄膜。陽極層離子源具高電流之特性,可以提高濺擊產率增加薄膜沉積速度,且氮氣電漿光譜顯示有較高的氮原子,應可改善掺氮氧化鋅薄膜中氮之濃度。研究結果顯示在所沉積之薄膜皆具(002)擇優成長方向之特性,實驗結果顯示未掺氮之氧化鋅薄膜在200?a下成長並於700?aC退火具有最小(002)繞射峰值之半高寬,且光致螢光光譜亦顯示此樣品有較好之半高寬且綠光缺陷也較低。以此條件沉積20 nm緩衝層。在室溫下成長之氧化鋅較為緻密且平整而300℃下之氧化鋅有呈現結晶顆粒的分佈,顯示當成長溫度升高時氧化鋅薄膜之結晶情較為明顯。拉曼光譜儀分析氧化鋅薄膜,得到氧化鋅E2(high) 436cm-1之氧化鋅峰值及在摻氮氧化鋅得到275 cm-1及582 cm-1之局部震盪模式,證明已成功地將氮掺入氧化鋅中,霍爾量測結果顯示所沉積之掺氮氧化鋅皆呈現n-型,有可能是由於過多的分子氮佔據氧原子之位置而形成雙施子使薄膜呈現n型。變溫霍爾量測結果顯示摻氮氧化鋅在溫度165K-300K範圍內符合熱活化傳導,得到氮流量為0.5 sccm下之活化能約73 meV。此外本實驗摻氮氧化鋅比未摻雜之氧化鋅有較高的穿透率約80%~90%,並且計算出其光學能隙約為 3.158 eV。
Nitrogen doped ZnO (ZnO:N) thin films have been deposited by reactive ion beam sputter deposition utilizing an anode layer ion source. Both argon and nitrogen were passed simultaneously through the ion source to act as sputtering and reactive ion species, respectively. The plasma spectrum of the anode layer ion source shows distinctive atomic nitrogen emission lines suggesting that the incorporation of atomic nitrogen into ZnO may be improved. Experimental results show that all the film exhibit a preferred orientation along the (002) direction. A 20 nm un-doped ZnO was first deposited at 200?aC and subsequently annealed at 700?aC to act as buffer layers. Higher annealing temperature causes decomposition of the ZnO film and results in increased deep level green emission. ZnO:N was deposited on the buffer layer at 25 ~ 300?aC. Micro-Raman spectroscopy analysis shows Raman peaks at 275 and 582 cm-1, which is due to the local vibration mode of nitrogen in ZnO. All the nitrogen doped ZnO exhibit n-type conductivity. Conversion from n-type to p-type was not observed regardless of nitrogen flow rates or post-growth annealing. This is likely due to the formation of molecular nitrogen occupying oxygen sites (N2)O that act as double donors. Variable temperature Hall effect measurement shows that at temperatures above 165 K, the transport is governed by thermally activated carriers. The activation energy for conduction in this temperature range is 73 meV. The bandgap of ZnO:N is 3.158 eV, while the transmittance is larger than 80% in the visible region.
論文摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 X
第一章 緒論 1
1.1 前言 1
1.2 研究目的 3
第二章 研究理論與文獻回顧 4
2.1陽極層離子源(Anode layer ion source) 4
2.2離子束濺鍍沉積法 5
2.3摻氮氧化鋅文獻探討 6
2.3.1 掺氮氧化鋅薄膜製備方式及特性分析 6
2.3.2 氧化鋅本質及n型缺陷探討 23
第三章 實驗與分析 27
3.1 實驗設備,條件及流程 27
3.2 特性分析儀器 31
3.2.1X-ray 繞射儀(X-ray diffraction) 31
3.2.2 場發射掃描式電子顯微鏡 (Field emission scanning electron microscope, FE-SEM) 31
3.2.3 拉曼光譜儀(Micro-Raman spectroscopy) 32
3.2.4霍爾量測(Hall measurement) 33
3.2.5光激發螢光光譜(Photoluminescence spectroscopy, PL) 37
3.2.6穿透率量測(Trasmission) 38
第四章 實驗結果與討論 40
4.1 陽極層離子源之特性 40
4.2X-ray 繞射分析以氧化鋅為緩衝層 43
4.3 X-ray 繞射分析摻氮氧化鋅 46
4.4光激發螢光光譜分析以氧化鋅為緩衝層 47
4.5場發射掃描式電子顯微鏡分析 48
4.6拉曼光譜分析掺氮氧化鋅薄膜 51
4.7霍爾量測分析掺氮氧化鋅薄膜 53
4.8穿透率分析摻氮氧化鋅薄膜 60
第五章 結論與未來展望 62
參考文獻 64
[1] J. D. Albrecht, P. P. Ruden, S. Limpijumnong, W. R. L. Lambrecht, and K. F. Brennan, “High field electron transport properties of bulk ZnO,” J. Appl. Phys., Vol. 86, pp. 6864-6867, 1999.
[2] Anderson Janotti and Chris G. Van de Walle, “Native point defects in ZnO,”Phys. Rev. B, Vol. 76, pp. 165202-1 - 165202-22, 2007.
[3] B. Yao, D. Z. Shen, Z. Z. Zhang, X. H. Wang, Z. P. Wei, B. H. Li, Y. M. Lv, X. W. Fan, L. X. Guan, G. Z. Xing, C. X. Cong and Y. P. Xie, “Effects of nitrogen doping and illumination on lattice constants and conductivity behavior of zinc oxide grown by magnetron sputtering,” J. Appl. Phys., Vol. 99, pp. 123510-1- 123510-5, 2006.
[4] Min-Suk Oh, Sang-Ho Kim, Tae-Yeon Seong, “Growth of nominally undoped p-type ZnO on Si by pulsed-laser deposition,”Appl. Phys. Lett., Vol. 87,pp.122103-1-122103-3, 2005.
[5] Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho and H. Morkoç,“A comprehensive review of ZnO materials and device,” J. Appl. Phys., Vol. 98, pp. 041301-1 - 041301-103, 2005.
[6] C. H. Park, S. B. Zhang, and S.-H. Wei, “Origin of p-type doping difficulty in ZnO: The impurity perspective,”Phys. Rev. B, Vol. 66, pp. 0732021-732023, 2002.
[7] C. G. Van de Walle, D. B. Laks, G. F. Neumark, and S. T. Pantelides, “First-principles calculations of solubilities and doping limits: Li, Na, and N in ZnSe,”Phys. Rev. B, Vol. 47, pp. 9425-9434, 1993.
[8] Q. Y. Zhu, Z. Z. Ye, G. D. Yuan, J. Y. Huang, L. P. Zhu, B. H. Zhao, J. G. Lu, “Synthesis and characterization of Al-N codoped p-type ZnO epitaxial films using high-temperature homo-bufer layer,”Appl. Surf. Sci., Vol. 253, pp. 1903-0906, 2006.
[9] Shin-ichiro Kimura, Eiichi Murakami, kiyoshi Miyake, Terunori Warabisako, Hideo Sunami, and Takashi Tokuyama, “Low temperature oxidation of silicon in a microwave-discharged oxygen plasma,”Solid-State Sci. Technol., Vol. 132, pp. 1461-1466, 1985.
[10]S. Miyanaga, T. Kaneko, H. Ishida, R. Hatakeyama, “Synthesis evaluation of nitrogen atom encapsulated fullerenes by optical emission spectra in nitrogen plasmas,”Thin Solid Films, Vol. 518, pp. 3509-3512, 2010.
[11] S. Peter, F. Richter, R. Tabersky, U. König, “Optical emission spectroscopy of a PCVD process used for the deposition of TiN on cemented carbides,”Thin Solid Films, Vol. 377-378, pp. 430-435, 2000.
[12] Dr. John, E. Keem, “High Current Density Anode Layer Ion Sources,”http://www.sunnetsystems.com.cn/pdf/High%20Current%20Density%20ALS_8.5x11%20Web.pdf.
[13] V. Dudnikov, A. Westner, “Ion source with closed drift anode layer plasma acceleration,”Rev. Sci. Instrum., Vol. 73, pp. 729, 2002.
[14] Chr. Weissmantel, O. Fiedler, G. Hecht and G. Reisse, “Ion beam sputtering and its application for the deposition of semiconducting films,” Thin Solid Films, Vol. 13, pp. 359-366, 1972.
[15] S. M. Kane and K. Y. Ahn, “Characteristics of ion-beam-sputtered thin films,” J. Vac. Sci. Technol., Vol. 16, pp. 171-174, 1979.
[16] Y. Suzuki, T. Yotsuya, K. Takiguchi, M. Yoshitake and S. Ogawa, “The effect of charged particles when preparing ZnO thin film by ion beam sputtering deposition,”Appl. Surf. Sci., Vol. 33-34, pp. 1114-1119, 1988.
[17] S. B. Krupanidhi, H. Hu and V. Kumar, “Multi-ion-beam reactive sputter deposition of ferroelectric Pb(Zr,Ti)O3 thin films,” J. Appl. Phys., Vol. 71, pp. 376-388, 1992.
[18] C. C. Lee, J. C. Hsu, D. T. Wei and J. H. Lin, “Morphology of dual beam ion sputtered films investigated by atomic force microscopy,” Thin Solid Films, Vol. 308-309, pp. 74-78, 1997.
[19] M. Sumiya, S. Fuke, A. Tsukazaki, K. Tamura, A. Ohtomo, M. Kawasaki and H. Koinuma, “Quantitative control and detection of heterovalent impurities in ZnO thin films grown by pulsed laser deposition,” J. Appl. Phys., Vol. 93, pp. 2562-2569, 2003.
[20]K. Iwata, P.Fons, A. Yamada, K. Matsubara and S. Niki, “Nitrogen-induced defects in ZnO:N grown on sapphire substrate by gas source MBE,” J. Cryst. Growth, Vol. 209, pp. 526-531, 2000.
[21] D. C .Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason and G. Cantwell, “Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy,” Appl. Phys. Lett., Vol. 81, pp.1830-1832, 2002.
[22] A. B. M. Almamun Ashrafi, I. Suemune, H. Kumano and S. Tanaka, “Nitrogen-Doped p-Type ZnO Layers Prepared with H2O Vapor-Assisted Metalorganic Molecular-Beam Epitaxy,” Jpn. J. Appl. Phys., Vol. 41, L1281, 2002.
[23] Yinzhu Zhang, Jianguo Lu, Lanlan Chen, Zhizhen Ye, “Properties of N-doped ZnO thin films in annealing process,”Solid State Commun., Vol. 413, pp. 562-565, 2007.
[24] Jun Xu, Ronald Ott, Adrian S. Sabau, Zhengwei Pan, Faxian Xiu, Jianlin Liu, Jean-Marie Erie, and David P. Norton, “Generation of nitrogen acceptors in ZnO using pulse thermal processing,”Appl. Phys. Lett., Vol. 92, pp. 151112-1-151112-3, 2008.
[25] Dong Wang, Jingwen Zhang, Yunpeng Peng, Zhen Bi, Zuming Bian, Xin’an Zhang, Xun Hou, “Plasma-activated nitrogen-doped p-type ZnO thin films with multi-buffer-layers grown on sapphire (0001) by L-MBE,”J. Alloys Compd., Vol. 478, pp. 325-329, 2009.
[26] Sayanee Majumdar, P. Banerji, “Hopping conduction in citrogen doped ZnO in the temperature range 10-300K,”J. Appl. Phys., Vol. 107, pp. 063702-1-063702-4, 2010.
[27] Xingyou Chen, Zhenzhong Zhang, Bin Yao, Mingming Jiang, Shuangpeng Wang, “Effect of compressive stress on stablility of N-doped p-type ZnO”Appl. Phys. Lett., Vol. 99,pp.091908-1-091908-3, 2011.
[28] Chris G. Van de Walle, “Hydrogen as a Cause of Doping in Zinc Oxide,” Phys. Rev. Lett., Vol. 85, pp. 1012-1015, 2000.
[29] Fumiyasu Oba, Atsushi Togo and Isao Tanaka, “Defect energetics in ZnO: A hybrid Hartree-Fock density functional study,” Phys. Rev. B,Vol. 77,pp. 245202-1- 245202-6, 2008.
[30] Hui Chen, Shulin Gu, Wei Liu, Shunming Zhu and Youdou Zheng , “Influence of unintentional doped carbon on growth and properties of N-doped ZnO films,” J. Appl. Phys., Vol.104, pp. 113511-1- 113511-6, 2008.
[31] Y. Ma, G. T. Du, S. R. Yang, Z. T. Li, B. J. Zhao, X. T. Yang, T. P. Yang, Y. T. Zhang and D. L. Liu, “Control of conductivity type in undoped ZnO thin films grown by metalorganic vapor phase epitaxy,” J. Appl. Phys., Vol.95, pp. 6268-6272, 2004.
[32] Won Taeg Lim and Chang Hyo Lee, “Highly oriented ZnO thin films deposited on Ru/Si substrates,” Thin Solid Films, Vol. 353, pp. 12-15, 1999.[27->32]
[33] H. C. Ong, A. X. E. Zhu, G. T. Du, “Dependence of the excitonic transition energies and mosaicity on residual strain in ZnO thin films,”Appl. Phys. Lett., Vol. 80, pp. 941-943, 2002.
[34]J. P. Zhang, L. D. Zhang, L. Q. Zhu, Y. Zhang, M. Liu, X. J. Wang and G. He, “Characterization of ZnO:N films prepared by annealing sputtered zinc oxynitride films at different temperatures,” J. Appl. Phys., Vol. 102, pp. 114903-1- 114903-7, 2007.
[35] Manuel Cardona, “Vibrationsinamorphoussiliconanditsalloys,” J. Mol. Struct., Vol. 141, pp. 93-107, 1986.
[36] Daxing Han, J. D. Lorentzen, J. Weinberg-Wolf, L. E. McNeil and Qi Wang, “Raman study of thin films of amorphous-to-microcrystalline silicon prepared by hot-wire chemical vapor deposition,” J. Appl. Phys., Vol. 94, pp. 2930-2936, 2003.
[37] A.Kaschner, U. Haboeck, Martin Strassburg, Matthias Strassburg, G. Kaczmarczyk, A. Hoffmann, C. Yhomsen, A. Zeuner, H. R. Alves, D. M. Hofmann and B. K. Meyer, “Nitrogen-related local vibrational modes in ZnO:N,” Appl. Phys. Lett., Vol. 80,pp.1909-1911, 2002.
[38] Shujie Jiao, Youming Lu, Zhengzhong Zhang, Binghui Li, Bin Yao, Jiying Zhang, Dongxu Zhao, Dezhen Shen and Xiwu Fan, “Optical and electrical properties of highly nitrogen-doped ZnO thin films grown by plasma-assisted molecular beam epitaxy,” J. Appl. Phys., Vol.102, pp. 113509-1- 113509-4, 2007.
[39] C. H. Ho, Y. S. Huang, K. K. Tiong, “Characterization of near band-edge properties of synthetic p-FeS2 iron pyrite from electrical and photoconductivity measurements,” J. Alloys Compd., Vol. 422, pp. 321-327, 2006.
[40] Yanfa Yan, “Metal-oxide bandgap engineering for photo-electrochemical water splitting,” SPIE Rev., pp. 003319-1-003319-2, 2010.
[41] J. Tauc, R. Grigorovici and A. Vancu, “Optical properties and Electronic Structure of Amorphous Germanium,” Phys. Status Solidi., Vol. 15, pp. 627-637, 1966.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔