(3.237.20.246) 您好!臺灣時間:2021/04/15 12:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:葉治成
研究生(外文):CHIH-CHEN YEH
論文名稱:使用位移時間差動訊號消除共模雜訊
論文名稱(外文):Elimination of Common-Mode Noise Using Time-Offset Differential Signal
指導教授:王蒼容
指導教授(外文):Chun-Long Wang
口試委員:王蒼容
口試日期:2012-06-06
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:138
中文關鍵詞:位移時間差動訊號
外文關鍵詞:Time-Offset Differential Signal
相關次數:
  • 被引用被引用:0
  • 點閱點閱:131
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文使用位移時間差動訊號的概念,來降低因路徑不相等而造成的模轉換,內容包含了九十度彎角差動傳輸線、差動蛇線和彎角強耦合差動蛇線,其改良結果分述如下。
首先,為了消除九十度彎角差動傳輸線的時域穿透共模雜訊,我們使用位移時間差動訊號,來減少九十度彎角差動傳輸線的路徑差。量測到的TDT共模雜訊峰值電壓,為0.019 V,遠比沒加位移時間差動訊號的九十度彎角差動傳輸線的TDT共模雜訊電壓0.065 V來得小。另外,量測到的TDR差模雜訊峰值電壓,為0.023 V,亦比沒加位移時間差動訊號的九十度彎角差動傳輸線的時域反射差模雜訊電壓0.033 V來的小。接下來,為了比較頻域S參數的特性,我們推導了位移時間九十度彎角差動傳輸線的等效S參數。由模擬結果我們可知,位移時間九十度彎角差動傳輸線,可以大大地降低差模到共模的模轉換,從DC到6 GHz的頻帶內,有大於或等於7 dB以上的降幅。另外,使用位移時間九十度彎角差動傳輸線,並不會增加差模或是共模的反射。再者,位移時間九十度彎角差動傳輸線,可以增加差模到差模的穿透。並且,其差模到差模穿透的相位也有很好的線性度。最後,我們萃取了位移時間九十度彎角的等效電路參數,從這些等效電路參數我們可知,因為位移時間九十度彎角的內側路徑的自感L13=2.0822 nH相當接近外側路徑的自感L24=2.0688 nH,並且,其內側路徑自容C11= C33=0.16837 pF相當接近外側路徑自容C22= C44=0.2535 pF,因此,當輸入一個差動訊號時,內側路徑與外側路徑上的訊號較能同時抵達接收端,造成較小的差模到共模的模轉換。
接著,我們探討了差動蛇線和彎角強耦合差動蛇線的模轉換。首先,我們提出了位移時間差動蛇線,來降低偶數對差動蛇線的共模雜訊。位移時間差動蛇線的模轉換,從DC到15 GHz皆小於–13 dB,和差動蛇線的模轉換比較,在整個頻帶內模轉換有降低的趨勢。而TDT共模雜訊峰值電壓,從原先的0.0289 V大幅降至0.0117 V,並且,其TDR差模雜訊峰值電壓沒有增加。接下來我們也提出了位移時間之彎角強耦合差動蛇線,從DC到15 GHz皆小於–18 dB,和彎角強耦合差動蛇線的模轉換比較,在整個頻帶內模轉換有降低的趨勢。而TDT共模雜訊峰值電壓,從原先0.0154 V降至0.0065 V,並且,其TDR差模雜訊峰值電壓沒有增加。為了驗證上述差動蛇線和彎角強耦合差動蛇線加上位移時間差動訊號的效果,我們使用降頻放大的方法,將整體電路放大了5.72倍。降頻放大的電路經過實際量測後與模擬的結果相當吻合,證明了模擬結果的正確性。
In this thesis, the timing-offset differential signal is proposed to eliminate the differential-to-common mode conversion induced by the unequal paths of the bended differential transmission line, which includes the bended differential transmission line using the right-angle bend, differential serpentine delay line and differential serpentine delay line with strongly-coupled turns. The improvement is demonstrated as follows.
First of all, in order to eliminate the TDT common mode noise of bended differential transmission line using the right-angle bend, the timing-offset differential signal is applied on the bended differential transmission line. The measured TDT common-mode noise is about 0.019V, which is much smaller than 0.065V of the bended differential transmission line without the timing-offset signal. Besides, the measured TDR differential-mode noise is about 0.023V, which is also smaller than 0.033V of the bended differential transmission line without the timing-offset signal. Furthermore, in order to investigate the frequency-domain S-parameters, we introduce the idea of equivalent S-parameters for the timing-offset bended differential transmission line. According to the simulation results, the timing-offset bended differential transmission using the right-angle bend can substantially reduce the mode conversion, which has 7 dB improvement from DC to 6 GHz. Besides, the timing-offset bended differential transmission line using the right-angle bend does not increase the differential-mode or common-mode reflection at the sending end. Also, it can increase the differential-mode to differential-mode transmission at the receiving end. In addition, the phase of the differential-mode to differential-mode transmission has a linear response. Finally, in order to investigate the insights of the reduction of the mode conversion, we extract the equivalent circuit parameters of the timing-offset bended differential transmission line using the right-angle bend. According to the equivalent circuit parameters, since the self-inductance (L13=2.0822 nH) of the inner path is quiet close to the self-inductance (L24=2.0688 nH) of the outer path and the self-capacitance (C11= C33=0.16837 pF) of the inner path is also close to self-capacitance (C22= C44=0.2535 pF) of the outer path, the differential signal on the inner and outer paths will approximately reach the receiving end at the same time, causing a great reduction in the common noise.
Secondly, we investigate the differential serpentine delay line and differential serpentine delay line with strongly-coupled turn. Owing to the even number of the coupled delay line, the lengths of the inner and outer paths become unequal, inducing the common mode noise at the receiving end. In order to reduce the common mode noise, the timing-offset differential signal is applied on the differential serpentine delay line. The mode conversion of the timing-offset differential serpentine delay line is below –13dB from DC to 15GHz. As compared with mode conversion of the differential serpentine delay line, the mode conversion is reduced. Besides, the amplitude of the TDT common-mode noise at the receiving end is reduced from 0.0289 V to 0.0117 V whereas the amplitude of the TDR differential-mode noise at the sending end is not increased. Furthermore, the timing-offset differential signal is applied to the serpentine delay line with strongly-coupled turn so as to further reduce the common mode noise. The mode conversion of the timing-offset differential serpentine delay line with strongly-coupled turns is below –18dB from DC to 15GHz. As compare with the mode conversion of the differential serpentine delay line with strongly-coupled turns, the mode conversion is decreased. Besides, the amplitude of the TDT common-mode noise at the receiving end is reduced from 0.0154 V to 0.0065 V whereas the amplitude of the TDR differential-mode noise at the sending end is not increased. In order to verify the simulation results of the timing-offset serpentine delay line and timing-offset serpentine delay line with strongly-coupled turns, 5.72 times scaled down serpentine delay lines are fabricated and measured. The measurement results of the scaled down circuits, which are in good agreement with the simulation results, verifies our designs.
摘要……………………………………………………………………………………I
Abstract……………………………………………………………………………....III
目錄………………………………………………………………………..…..……VII
圖目錄…………………………………………………………………………..…….X
表目錄……………………………………………………………………………....XII
第一章 序論…………………………………………………………………………1
1.1 研究動機………………………………………………………………...…1
1.2 文獻探討…………………………………………………………………...2
1.3 貢獻……………………………………………………………………......11
1.4 論文架構……………………………………………………………….…12
第二章 九十度彎角差動傳輸線之共模雜訊消除………………………………..15
2.1 九十度彎角差動傳輸線………………………………………………….16
2.1.1 頻域模轉換的模擬與驗證…………………………………………..16
2.1.2 時域穿透及反射的模擬與驗證……………………………………..19
2.2 位移時間之九十度彎角差動傳輸線…………………………………….21
2.2.1 時域穿透及反射的模擬與驗證……………………………………..22
2.2.2 頻域模轉換的模擬與驗證………………………………………..…26
2.2.2.1 等效S參數的推導…………………………………………….26
2.2.2.2 頻域差模與共模S參數……………………………………….31
2.2.2.3 位移時間的九十度彎角差動傳輸線之等效電路…………….38
2.3 章節小節………………………………………………………………….49
第三章 位移時間差動蛇線………………………………………………………..51
3.1 差動蛇線………………………………………………………………….53
3.1.1 頻域模轉換的模擬…………………………………………………..53
3.1.2 時域穿透及反射的模擬……………………………………………..55
3.2 位移時間之差動蛇線…………………………………………………….57
3.2.1 時域穿透及反射的模擬……………………………………………..57
3.2.2 頻域模轉換的模擬………………………………………..…………61
3.3 彎角強耦合差動蛇線…………………………………………………….62
3.3.1 頻域模轉換的模擬…………………………………………………..62
3.3.2 時域穿透及反射的模擬……………………………………………..64
3.4 位移時間之彎角強耦合差動蛇線……………………………………….66
3.4.1 時域穿透及反射的模擬……………………………………………..67
3.4.2 頻域模轉換的模擬…………………………………………………..71
3.4.3 頻域S參數的比較…………………………………………………..72
3.5 章節小節…………………………………………………………………..75
第四章 降頻放大的位移時間差動蛇線…………………………………………..80
4.1 降頻放大的差動蛇線……………………………………………………..80
4.1.1 頻域模轉換的模擬與驗證…………………………………………..81
4.1.2 時域穿透及反射的模擬與驗證……………………………………..83
4.2 降頻放大的位移時間差動蛇線……………………………………….….87
4.2.1 時域穿透及反射的模擬與驗證……………………………………..87
4.2.2 頻域模轉換的模擬…………………………………………………..90
4.3 降頻放大的彎角強耦合差動蛇線…………………………………….….91
4.3.1 頻域模轉換的模擬與驗證…………………………………………..91
4.3.2 時域穿透及反射的模擬與驗證……………………………………..94
4.4 降頻放大的位移時間彎角強耦合差動蛇線………………………….….96
4.4.1 時域穿透及反射的模擬與驗證……………………………………..97
4.4.2 頻域模轉換的模擬…………………………………………………..99
4.5 章節小節…………………………………………………………………100
第五章 結論………………………………………………………………………105
參考文獻……………………………………………………………………………107
附錄A 九十度彎角帶線………………………………………………………...111
附錄B 九十度彎角差動傳輸線眼圖…………………………………………...114
附錄C 九十度彎角差動傳輸線之串擾………………………………………...120
[1]S. H. Hall, G. W. Hall, and J. A. McCall, High-Speed Digital System Design. New York: Wiley, pp. 140–141, 2000.
[2]P. E. Fornberg, M. Kanda, P. M. Melinda, and H. H. Stephen, “The impact of a nonideal return path on differential signal integrity,” IEEE Trans. Electromagn. Compat., vol. 44, pp. 671–676, Feb. 2002.
[3]G. H. Shiue and R. B. Wu, “Reduction in reflections and ground bounce for signal line through a split power by using differential coupled microstrip lines,” in Proc. IEEE 12th Topical Meeting on Electrical Performance of Electronic Packaging, pp. 107–110, Princeton, New Jersey, USA, Oct. 2003.
[4]Y. Massoud, J. Kawa, D. MacMillen, and J. White, “Modeling and analysis of differential signaling for minimizing inductive crosstalk,” in Proc. Design Automation Conference, pp. 804–809, Las Vegas, Nevada, USA , June, 2001.
[5]E. P. Li, H. F. Jin, W. L. Yuan, and L. W. Li, “Parallelized computational technique for signal propagation analysis at very high speed differential transmission line,” in Proc. IEEE Int. Symp. Electromagnetic Compatibility, pp. 850–854, Boston, Massachusetts, USA, Aug, 2003.
[6]W. D. Guo, G. H. Shiue, C. M. Lin, and R. B. Wu, “Comparisons between serpentine and flat spiral delay line on transient reflection/transmission waveforms and eye diagrams,” IEEE Trans. Microw. Theory Tech., vol. 54, pp.1379–1387, Apr. 2006.
[7]http://learn-garden.blogspot.com/2008/06/pci-e-agp-pci-e128mb-agp8x-8-agp8x-pci.html.
[8]R. Rimolo-Donadio, X. Duan, H.-D Bruns, and C. Schuster, “Differential to common mode conversion due to asymmetric ground via configurations,” in Proc. IEEE Workshop on Signal Propagation on Interconnects, pp. 1–4, Strasbourg, France, May, 2009.
[9]M. Tayarani and S. Khosravi, “Differential to common mode coupling in microstrip lines; calculation and improvement,” in Proc. IEEE Int. Symp. Electromagnetic Compatibility, pp. 293–296, Florida, USA, Nov, 2007.
[10]W.-T. Liu, C.-H. Tsai, T.-W. Han, and T.-L. Wu, “An embedded common-mode suppression filter for GHz differential signals using periodic defected ground plane,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 4, pp. 248–250, Apr. 2008.
[11]S. J. Wu, C. H, Tsai, T. L. Wu, and T. Itoh, “A novel wideband common-mode suppression filter for gigahertz differential signals using coupled patterned ground structure,” IEEE Trans. Microw. Theory Tech., vol. 57, no.4, pp. 848–855, Apr. 2009.
[12]C.-H. Tsai and T.-L. Wu, “A broadband and miniaturized common-mode filter for gigahertz differential signals based on negative-permittivity metamaterials,” IEEE Trans. Microw. Theory Tech., vol. 58, no.1, pp. 195–202, Jan. 2010.
[13]G. H. Shiue, W. D. Guo, C. M. Lin, and R. B. Wu, “Noise reduction using compensation capacitance for bend discontinuities of differential transmission lines,” IEEE Trans. Adv. Packag., vol. 29, pp. 560–569, Aug. 2006.
[14]C. Gazda, D. V. Ginste , H. Rogier, R. B. Wu, and D. D. Zutter, “A wideband common-mode suppression filter for bend discontinuities in differential signaling using tightly coupled microstrips,” IEEE Trans. Adv. Packag., vol. 33, pp. 969–978, Nov. 2010.
[15]C. H. Chang, R. Y. Fang, and C. L. Wang, “Bended differential transmission line using short-circuited coupled line for common-node noise suppression,” in Proc. IEEE 20th Conference on Electrical Performance of Electronic Packaging and Systems, pp. 291–294. San Jose, CA, USA, 2011.
[16]R. B. Wu and F. L. Chao, “Laddering wave in serpentine delay line,” IEEE Trans. Compon., Packag., Manuf. Technol., B, vol. 18, no. 4, pp. 644–650, Nov. 1995.
[17]R. B. Wu and F. L. Chao, “Flat spiral delay line design with minimum crosstalk penalty,” IEEE Trans. Compon., Packag., Manuf. Technol., B, vol. 19, no. 2, pp. 397–402, May 1996.
[18]G. H. Shiue, C. Y. Chao, and R. B. Wu, “Guard trace design for improvement on transient waveforms and eye diagrams of serpentine delay lines,” IEEE Trans. Adv. Packag., vol. 33, pp. 1051–1060, Nov. 2010.
[19]G. H. Shiue, J. H. Shiu, P. W. Chiu, and C. M. Hsu, “Improvements of time-domain transmission waveform and eye diagram of serpentine delay line using open-stub type guard traces in embedded microstrip line,” IEEE Trans. Compon., Packag., Manuf. Technol., vol. 1, no. 11, pp. 1706–1717, Nov. 2011.
[20]G. H. Shiue, J. H. Shiu, Y. C. Tsai, and C. M. Hsu, “Analysis of common-mode noise for weakly coupled differential serpentine delay microstrip line in high-speed digital circuits,” IEEE Trans. Electromagn. Compat., vol., pp.00–00, 2011.
[21]W. D. Guo, G. H. Shiue, C. M. Lin, and R. B. Wu, “Comparisons between serpentine and flat spiral delay lines on transient reflection/transmission waveforms and eye diagrams,” IEEE Trans. Microw. Theory Tech., vol. 54, no.4, pp. 1379–1387, Apr. 2006.
[22]G. H. Shiue, Y. C. Tsai, C. M. Hsu, and J. H. Shiu, “Common-mode noise reduction schemes for differential serpentine delay microstrip line in high-speed digital circuits,” in Proc. IEEE 20th Topical Meeting on Electrical Performance of Electronic Packaging, pp. 211–214, Oct. San Jose, CA, USA, 2011.
[23]J. Jansson, A. Mantyniemi, J. Kostamovaara, “A delay line based CMOS time digitizer IC with 13 ps single-shot precision,” in Proc. IEEE Int. Symp. Circuits and Systems, vol. 5, pp.4269–4272, Kobe, Japan, May, 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔