(3.238.249.17) 您好!臺灣時間:2021/04/14 13:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林峰存
研究生(外文):Feng-tsuen Lin
論文名稱:應用於微電網系統之高效率10 kW數位控制雙向直流/直流轉換器
論文名稱(外文):A High-Efficiency 10-kW Digitally-Controlled Bidirectional DC-DC Converter for Micro-grid System Applications
指導教授:羅有綱邱煌仁
口試委員:羅有綱邱煌仁
口試日期:2012-06-13
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:90
中文關鍵詞:雙向直流/直流轉換器零電壓切換相移控制三階段式充電ECAN通訊微電網
外文關鍵詞:Bidirectional DC/DC converterzero voltage switchingphase-shift controlthree-stage chargingE-CAN communicationmicro-grid system.
相關次數:
  • 被引用被引用:5
  • 點閱點閱:213
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文所使用之雙半橋無隔離型雙向直流/直流轉換器電路,其傳統的開關控制信號為硬切式,但本文採用不同的控制方式,使所有開關皆能達到零電壓切換,以提高電路轉換效率。除了利用電壓回授控制責任週期達到穩壓外,還採用電流回授控制相移角度,實現輕載至滿載皆能達成高轉換效率。此外,文章內推導電路的小信號模型,並設計數位PID補償器維持電路穩定操作。在充電策略方面則採用第一階段定電流-第二階段定電流-定電壓三階段式充電,如此一來既可實現快速充電的需求,又可兼顧磷酸鋰鐵電池的壽命。由於控制策略過於複雜且功能甚多,難以一般IC實現,故採用DSP為中央控制器,最後完成一台10 kW、輕載效率在96%以上、滿載效率高達98%以上、具有ECAN通訊功能、應用於微電網之數位控制高效率雙向直流/直流轉換器。
This thesis presents a non-isolated bidirectional dual half-bridge (DHB) DC/DC converter. Unlike the traditional control with hard switchings, zero-voltage-switching (ZVS) is fulfilled with a novel control method to improve the conversion efficiency. In addition to regulate the output voltage by adjusting the duty cycles via voltage feedback loop, the phase-shift control via current feedback loop can achieve high efficiency under wide-range load variations. A small signal model of the presented converter is constructed to design a digital PID compensator. To satisfy the demands for fast charging and long lifetime of LiFePO4 batteries, a three-stage charging scheme is adopted. Finally, a digital signal processor (DSP) is used to implement a 10-kW prototype converter with E-CAN communication function for micro-grid system applications. The experimental results show that the light-load efficiency is over 96%, and the rated-load efficiency is over 98%.
摘 要 I
Abstract II
誌 謝 III
目 錄 IV
圖索引 VII
第一章 緒論 1
1.1 研究動機與目的 1
1.2 論文內容大綱 2
第二章 微電網與電池充電策略 4
2.1 微電網簡介 4
2.2 CAN通訊傳輸 5
2.3 電池充電策略分析 7
2.3.1 定電壓充電法 7
2.3.2 定電流充電法 8
2.3.3 三階段充電法 9
第三章 雙向轉換器動作原理與模式分析 11
3.1 雙向直流/直流轉換器動作原理 11
3.2 雙向直流/直流轉換器模式分析 13
3.2.1 放電模式狀態分析 13
3.2.2 充電模式狀態分析 19
第四章 相移機制與數位控制分析 27
4.1 相移控制 27
4.2 相移角度及電感量最佳化 28
4.3 數位控制系統介紹 30
4.3.1 數位信號處理器TMS320F28035之簡介 30
4.3.2 雙向轉換器數位控制系統分析 31
4.4 雙向轉換器軟體流程規劃 32
4.4.1 雙向轉換器整體系統流程圖 32
4.4.2 系統初始化區塊流程圖 33
4.4.3 放電模式區塊流程圖 34
4.4.4 充電模式區塊流程圖 36
第五章 雙向轉換器小信號分析與補償 38
5.1 雙向直流/直流轉換器小信號分析 38
5.2 數位控制器之時間延遲與類比補償器設計 45
5.3 比例-積分-微分(PID)補償器 47
5.4 數位PID補償器演算法與設計 48
第六章 雙向轉換器參數設計 51
6.1 類比電路及元件設計 51
6.1.1 IGBT驅動電路設計 51
6.1.2 電池端/匯流排端濾波電容設計 54
6.1.3 電感值設計 54
6.1.4 相移角度設計 55
6.1.5 功率開關元件設計 56
6.1.6 零電壓切換條件 57
6.2 數位參數設計 57
6.2.1 數位暫存器 57
6.2.2 數位變數 58
第七章模擬與實驗結果討論 59
7.1 電路模擬 59
7.1.1 放電模式電路模擬 59
7.1.2 充電模式電路模擬 61
7.2 電路實測數據與波形 63
7.2.1 放電模式功能測試 64
7.2.2 充電模式功能測試 66
7.2.3 零電壓切換驗證波形 69
7.2.4 相移機制驗證 69
7.2.5 微電網各子系統併聯測試圖 71
7.2.6 中央管理器通訊功能 72
7.2.7 雙向直流/直流轉換器之實體電路圖 73
第八章 結論與未來研究方向 74
8.1 結論 74
8.2 未來研究方向 74
參考文獻 76
[1] S. Jiang, D. Cao, D. Y. Li, and F. Peng, “Grid-Connected Boost-Half-Bridge Photovoltaic Micro Inverter System Using Repetitive Current Control and Maximum Power Point Tracking,” IEEE Transactions on Power Electronics, 2012. (In Press)
[2]Z. Zhang, M. Chen, M. Gao, Q. Mo, and Z. Qian, “An Optimal Control Method for Grid-connected Photovoltaic Micro-inverter to Improve the Efficiency at Light-load Condition,” 2011 IEEE Energy Conversion Congress and Exposition (ECCE), 2011, pp. 219-224.
[3]F. Katiraei, M.R. Iravani, "Power Management Strategies for a Microgrid with Multiple Distributed Generation Units," Power Systems, IEEE Transactions on , vol. 21, no. 4, pp. 1821-1831, Nov. 2006.
[4]H. Kakigano, Y. Miura, T. Ise and R. Uchida, "DC Voltage Control of the DC Micro-grid for Super High Quality Distribution", PCC(Power Conversion Conferene) 2007, Nagoya, Japan, April 2-5, 2007.
[5]S. Inoue and H. Akagi, “A bidirectional isolated DC–DC converter as a core circuit of the next-generation medium voltage power conversion system,” IEEE Trans. Power Electron., vol. 22, no. 2, pp. 535–542, Mar. 2007.
[6]M. D. Jain and P. Jain, “A bidirectional DC–DC converter topology for low power application,”IEEE Trans. Power Electron., vol. 15, no. 4, pp. 595–606, Jul. 2000.
[7]S. Abedinpour, R. Liu, G. Fasullo, and K. Shenai, “Small-signal analysis of a new asymmetrical half-bridge dc-dc converter,” Proceedings of INTELEC, 2000, PP. 843-847.
[8] H. Li, D. Liu, F.Z. Peng, G. Su, “A Small Signal Analysis of A Dual Half Bridge Isolated ZVS Bidirectional dc-dc converter for Electrical Vehicle Applications,” in Proc. IEEE PESC’05, 2005, pp. 2777-2782.
[9] Waffler, S., Kolar, and J.W., “A Novel Low-loss Modulation Strategy for High-power Bidirectional Buck + Boost Converters,” IEEE Trans. on Power Electronics, vol. 22, no. 6, pp. 1589–1599, June 2009.
[10]H. Li, F.-Z. Peng, and J. S. Lawler, “A natural ZVS medium-power bidirectional DC–DC converter with minimum number of devices,” IEEE Trans. Ind. Appl., vol. 39, no. 2, pp. 525–535, Mar. 2003.
[11]F. A. Himmelstoss and M. E. Ecker, “Analysis of a bidirectional DC-DC half-bridge converter with zero voltage switching,” in Proc. ISSCS’05, July 2005, vol. 2, pp. 449-452.
[12]H. Xiao, D. Chen, and S. Xie, “A ZVS Bi-directional dc–dc converter for high-low voltage conversion,” in Proc. IEEE IECON, 2005, pp.1154–1158.
[13]F. Katiraei and M. R. Iravani, "Power Management Strategies for a Microgrid With Multiple Distributed Generation Units," IEEE Transactions on Power Systems, vol. 21, no. 4, pp. 1821-1831, 2006.
[14]H. H. Zeineldin, E. F. El-Saadany, and M. M. A. Salama, "Distributed Generation Micro-Grid Operation: Control and Protection," in Proc. Power Systems Conference: Advanced Metering, Protection, Control, Communication, and Distributed Resources, 2006. PS '06, 2006, pp. 105-111.
[15]X. Hang, B. Rui-lin, Y. Hui, "Design of Higher Layer Protocol Based on CAN Bus", Computer Engineering,China, 2007, Vol.33, No.24, pp.158-160.
[16]M. F. M. Elias, K. M. Nor, N. A. Rahim, and A. K. Arof, “Lithium-ion Battery Charger for High Energy Application,” National Power Engineering Conference, 2003, pp. 283-288.
[17]W. Lee, B. M. Han, and H. Cha, “Battery Ripple Current Reduction in a Three-phase Interleaved DC-DC Converter for 5kW Battery Charger,” 2011 IEEE Energy Conversion Congress and Exposition, pp. 3535-3540.
[18]李至章,應用DSP於電動車充電站快充控制系統之研究,國立成功大學電機工程學系論文,2001年。
[19]鄭明憲,具即時監測雙向並聯直流轉換器之研製,國立成功大學電機工程學系論文,2005年。
[20]EPARC,電力電子學綜論,全華出版社,2007年。
[21]廖益昌,大尺寸液晶電視之數位化電源研製,國立台灣科技大學電機工程學系碩士論文,2009年。
[22]D. Kwok, and P. Wang, “Optimal design of PID process controllers basded on genetic algorithms”, Control engineering practice, vol.2 no.4, pp. 193-197, 1994.
[23]Y. Duan and H. Jin, .Digital controller design for switchmode power converters,. Conference Proceedings of the Fourteenth IEEE Applied Power Electronics Conference and Exposition, vol. 2, pp. 967-973, 1999.
[24]劉信賢,設計數位控制器操作於不連續導通模式之降壓型轉換器,國立台灣大學電資學院電信電子產業研發碩士專班碩士論文,2009年。
電子全文 電子全文(網際網路公開日期:20220712)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔