(3.230.173.249) 您好!臺灣時間:2021/04/18 08:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉又維
研究生(外文):You-Wei Liu
論文名稱:CRLH雙頻帶壓控振盪器與使用變壓器新型壓控振盪器之研製
論文名稱(外文):Implementation of CRLH Dual-band VCO and Novel VCOs using Transformer Coupling
指導教授:張勝良莊敏宏
指導教授(外文):Sheng-Lyang JangMiin-Horng Juang
口試委員:張勝良莊敏宏
口試日期:2012-07-16
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:82
中文關鍵詞:壓控振盪器四相位雙頻帶考畢茲互補式三相位相位雜訊
外文關鍵詞:voltage-controlled oscillatorquadraturedual-bandColpittscomplementarythree-phasephase noise
相關次數:
  • 被引用被引用:0
  • 點閱點閱:54
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在無線通訊系統中,頻率合成器是用來做訊號頻率的升降之用。在頻率合成器電路裡,壓控振盪器是重要的核心電路之ㄧ。對壓控振盪器而言,必須提供低相位雜訊的輸出,以避免相鄰雜訊訊號經由混波轉換產生干擾。
本論文提出一個雙頻帶電壓控制振盪器、一個三相位壓控振盪器和一個四相位壓控振盪器。在第一個電路裡,它是個用電晶體當開關的雙頻帶電壓控制振盪器。第二個電路是個使用一種新型電感加上三推式耦合的三相位互補式考畢茲壓控振盪器。第三個電路中,我們提出一個使用N型電晶體共閘極耦合技術產生四相位輸出的壓控振盪器。
首先,一個雙頻帶的壓控振盪器使用台積電0.18微米製程實現雙頻輸出。壓控振盪器的低頻操作頻率從3.92 GHz到4.3 GHz而高頻操作頻率從6.34 GHz 到6.86 GHz且功率消耗為4.425 mW。而在輸出低頻頻率為4.26 GHz時,1 MHz偏移頻率下相位雜訊為 -124.46 dBc/Hz,在輸出高頻頻率為6.49 GHz時,1 MHz偏移頻率下相位雜訊為 -118.31 dBc/Hz,低頻的figure of merit為 -190.58 dBc/Hz且高頻的figure of merit為 -188.09 dBc/Hz,晶片面積1.16 × 1.12 mm2。
其次,一個 4.6 GHz的壓控振盪器使用台積電0.18微米製程實現三相位且在平衡的電路架構中使用三個相同的單端互補式考畢茲壓控振盪器和透過打線的電感效應耦合成三相位輸出。三相位壓控振盪器操作頻率從 4.59 GHz到 5.094 GHz且功率消耗為 10.764 mW。而在輸出頻率為 4.6 GHz時,1 MHz偏移頻率下相位雜訊為 -118.39 dBc/Hz,晶片面積 1.096 × 1.088 mm2且figure of merit為 -181.36 dBc/Hz。
最後,我們提出四相位壓控振盪器,使用common-gate電晶體取代common-source電晶體作為耦合元件,一個 3.8 GHz的壓控振盪器使用台積電0.18微米製程實現四相位使用兩組P型交錯耦合電晶體為和透過N型電晶體當作耦合元件。此電路的可調頻率為 3.65 GHz至 3.94 GHz。而在輸出頻率為3.8 GHz時, 1 MHz偏移頻率下相位雜訊為 -126.64 dBc/Hz且消耗功率為 7.24 mW。此電路的figure of merit為 -189.64 dBc/Hz,晶片面積 1.08 × 0.924 mm2。
In wireless communication system, frequency synthesizers are used to implement the frequency up/down converting of signal. In a frequency synthesizer, voltage-controlled oscillator (VCO) is the key block. For VCOs, low phase-noise output is required to avoid corrupting the mixer-converted signal by close interfering tones.
We present a dual-band VCO, a three-phase VCO and a Quadrature VCO in this thesis. In the first circuit, it’s a dual-band VCO using the transistor as the switch. The second circuit is a three-phase complementary colpitts VCO using the triple-push coupling and a novel inductor. In the third circuit, we proposed a VCO which provides quadrature outputs by NMOSFET common-gate -coupling technique.
Firstly, a dual-band VCO in 0.18 μm CMOS process is proposed to generate 2 output phases. The low-band of the VCO oscillates from 3.92 GHz to 4.3 GHz and the high-band of the VCO oscillates from 6.34 GHz to 6.86 GHz. The power consumption is 4.425 mW. The phase noise is -124.46 dBc/Hz at 1 MHz offset frequency from 4.26 GHz and the phase noise is -118.31 dBc/Hz at 1 MHz offset frequency from 6.49 GHz. A figure of merit of low-band is -190.58 dBc/Hz and a figure of merit of high-band is -188.09 dBc/Hz. The dual-band VCO occupies a chip area of 1.16 × 1.12 mm2.
Secondly, a prototype 4.6 GHz VCO in 0.18 μm CMOS process is proposed to generate 3 output phases and it uses three identical single-ended complementary Colpitts VCOs in a balanced configuration and coupled via the bonding inductors to provide 3-phase outputs. The 3-phase VCO oscillates from 4.59 GHz to 5.094 GHz and the power consumption is 10.764 mW. The phase noise is -118.39 dBc/Hz at 1 MHz offset frequency from 4.6 GHz. The VCO occupies a chip area of 1.096 × 1.088 mm2 and provides a figure of merit of -181.36 dBc/Hz.
Finally, we propose a fully-integrated quadrature cross-coupled voltage controlled oscillator (VCO) using common-gate transistor instead of common-source transistor as a coupling device. The prototype 3.8 GHz QVCO in 0.18 μm CMOS process is proposed to generate 4 output phases and it uses two p-core cross-coupled VCOs and nMOS coupling devices. The free-running frequency of the QVCO is tunable from 3.65 GHz to 3.94 GHz. The measured phase noise at 1 MHz frequency offset is -126.65 dBc/Hz at the oscillation frequency of 3.8 GHz and the total power consumption is 7.24 mW, the figure of merit (FOM) of the proposed QVCO is -189.64 dBc/Hz. The VCO occupies a chip area of 1.08 × 0.924 mm2.
中文摘要 I
ABSTRACT III
致 謝 V
LIST OF FIGURE VIII
LIST OF TABLE XII
CHAPTER 1 INTRODUCTION 1
1.1 Motivation 1
1.2 Thesis Organization 4
CHAPTER 2 OVERVIEWS OF VOLTAGE-CONTROLLED OSCILLATORS 5
2.1 Introduction 5
2.2 Basic Theory of Oscillators 6
2.2.1 One-Port (Negative Resistance) View 7
2.2.2 Two-Port (Feedback) View 10
2.3 All Types of Oscillators 12
2.3.1 Ring Oscillator 13
2.3.2 LC-Tank Oscillator 15
2.3 Voltage-Controlled Oscillators 19
2.3.1 VCO Characteristic Parameters 20
2.3.2 Phase Noise in Oscillator 22
2.3.3 Quadrature VCO Design 29
2.4 Resistors, Inductors and Capacitors in Semiconductor Technologies 35
2.4.1 Resistors 35
2.4.2 Inductors 36
2.4.3 Transformers 37
2.4.4 Capacitors 42
2.4.5 Varactors 43
CHAPTER 3 DUAL-BAND VCO WITH COMPOSITE RIGHT-/LEFT-HANDED RESONATOR 47
3.1 Introduction 47
3.2 Circuit Design 49
3.3 Measurement Results 53
3.4 Conclusion 57
CHAPTER 4 A BALANCED COMPLEMENTARY COLPITTS VCO USING A SYMMETRIC SIX-PORT TRANSFORMER 58
4.1 Introduction 58
4.2 Design of the Three-Phase VCO 60
4.3 Measurement Results 63
4.4 Conclusion 66
CHAPTER 5 A CMOS QUADRATURE VCO USING COMMON-GATE COUPLING TRANSISTORS 67
5.1 Introduction 67
5.2 Design of the Quadrature VCO 69
5.3 Measurement Results 73
5.4 Conclusion 76
CHAPTER 6 CONCLUSION 77
REFERENCES 79
[1]N. M. Nguyen, and R. G. Meyer, “Start-up and frequency stability in high-frequency oscillators,” IEEE Journal of Solid-State Circuits, vol. 27, pp. 810-820, May 1992.
[2]S. Smith, Microelectronic Circuit 4th edition, Oxford University Press 1998.
[3]J. Roggers, C. Plett, Radio frequency integrated circuit design, Artech House, 2003.
[4]B. Razavi, RF Microelectronics, Prentice Hall PTR, 1998.
[5]J. van der Tang, and D. Kasperkovitz, “Oscillator design efficiency: a new figure of merit for oscillator benchmarking ” IEEE Custom Integrated Circuits Conference, vol. 2, pp. 533-536, 2000.
[6]J. J. Rael, and A. A. Abidi, “Physical processes of phase noise in differential LC oscillators,” IEEE Custom Integrated Circuits Conference, pp. 569-572, 2000.
[7]T. Lee, and A. Hajimiri, “Oscillator phase noise: a tutorial,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 326-336, Mar. 2000.
[8]D. Leeson, “A simple model of feedback oscillator noise spectrum,” Proceedings of the IEEE, vol. 54, pp. 329-330, Feb. 1966.
[9]A. Hajimiri, and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179-194, Feb. 1998.
[10]A. Hajimiri, and T. H. Lee, “Design Issues in CMOS differential LC Oscillators,” IEEE J. Solid-State Circuits, vol. 34, no. 5, pp. 717–724, May 1999.
[11]T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, Cambridge University Press 1998.
[12]H. M. Greenhouse, “Design of planar rectangular microelectronic inductors,” IEEE Transactions on Parts, Hybrids, and Packaging, vol. 10, no. 2, pp. 101–109, Jun 1974.
[13]P. Andreani and S. Mattisson, “On the use of MOS varactors in RF VCOs,” IEEE J. Solid-State Circuit, vol. 35, no. 6, pp. 905–910, Jun. 2000.
[14]S.-L. Jang, Y. H. Chuang, C. C. Chen, S. H. Lee and J. F. Lee, “A CMOS dual-band voltage controlled oscillator”, IEEE Asia Pacific Conf. Circuits and Systems, 2006, pp. 514–517, Dec.2006.
[15]D. Wang, X. Wang, A. Eshraghi, D. Chang, and P. Bacon, “A fully integrated GSM/DCS/PCS Rx VCO with fast switching auto-band selection,” in Proc. IEEE Radio Wireless Conf., 2002, pp. 209–212.
[16]S.-M. Yim and K. K. O, “Switched resonators and their applications in a dual-band monolithic CMOS LC-tuned VCO,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 1, pp. 74–81, Jan. 2006.
[17]S.-L. Jang, Y.-K. Wu, C.-C. Liu and J.-F. Huang, ” A dual-band CMOS voltage-controlled oscillator implemented with dual-resonance LC tank,” IEEE Microw. Wireless Compon. Lett., vol. 19, No. 12, pp.816-818, Dec. 2009.
[18]S.-L. Jang, C.-L. Cheng, C.-W. Chang, and J.-F. Huang,” A dual-resonance CMOS voltage-controlled oscillator with enhanced performance through new varactor topology,” Microwave and Optical Technology Lett., vol. 54, no. 7, pp.1590-1593, July, 2012.
[19]A. Lai, and C. Caloz, "Composite right/left-handed transmission line metamaterials," IEEE Microwave Magazine, vol. 5, no. 3, pp. 34-50, 2004.
[20]S.-W. Tam, H.-T. Yu, Y. Kim, E. Socher, M. C. F. Chang, and T. Itoh, “A dual band mm-wave CMOS oscillator with left-handed resonator,” in Proc. IEEE Radio Freq. Integr. Circuits Symp., 2009, pp. 477–480.
[21]C. F. Chang, and T. Itoh, “A dual-band millimeter-Wave CMOS oscillator with left-handed resonator,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 5, pp. 1401–1409, May 2010.
[22]L. Dai and R. Harjani, "Design of low-phase-noise CMOS ring oscillators." IEEE Trans. Circuits Syst. II, vol. 49, no. 5, pp. 328-338, 2002.
[23]B. Razavi , “A study of phase noise in CMOS oscillators,” IEEE J. Solid-. State Circuits, vol. 31, pp. 331–343, Mar. 1996.
[24]J. J. Kim and B. Kim, “A low-phase-noise CMOS LC oscillator with a ring structure”, in ISSCC digest of technical papers, pp. 430-431, 2000.
[25]S.-H. Li, S.-L. Jang, Y.-S. Chuang and C.-F. Li, “A new LC-tank voltage controlled oscillator,” in IEEE Asia-Pacific Cir. Syst. Conf., vol. 1, Dec. 2004, pp. 425 – 427.
[26]D. Ham and A. Hajimiri, “Concepts and methods in optimization of integrated LC VCOs,” IEEE J. Solid-State Circuits, vol. 36, no. 6, pp. 896–909, June 2001.
[27]A. Rofougaran, J. Rael, M. Rofougaran, and A. Abidi, “A 900 MHz CMOS LC-oscillator with quadrature outputs,” in IEEE ISSCC Dig. Tech. Papers, Feb. 1996, pp. 392–393.
[28]J.-H. Chang and C.-K. Kim, “A symmetrical 6-GHz fully integrated cascode coupling CMOS LC quadrature VCO,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 10, pp. 670-672, Oct. 2005.
[29]S.-L. Jang, T.-S. Lee, C.-W. Hsue and C.-W. Chang, ” A low voltage and low power bottom-series coupled quadrature VCO,” IEEE Microw. Wireless Compon. Lett., vol. 19, No. 11, 722-724, Nov., 2009.
[30]G. Cusmai, M. Repossi, G. Albasini, A. Mazzanti, F. Svelto, “A magnetically tuned quadrature oscillator,” IEEE J. Solid-State Circuits, vol. 42, no. 12, pp. 2870–2877, Dec. 2007.
[31]X. Geng and F. F. Dai, “An X-band transformer-coupled varactor-less quadrature current-controlled oscillator in 0.18 μm SiGe BiCMOS technology,” IEEE J. Solid-State Circuits, vol. 45, no.9, pp. 670-672, Sept., 2010.
[32]Y.-H. Chuang, S.-H. Lee, R.-H. Yen, S.-L. Jang, and M.-H. Juang, “A low-voltage quadrature CMOS VCO based on voltage-voltage feedback topology,” IEEE Microw. Wireless Compon. Lett., vol. 16, no.12, pp. 696–698, Dec. 2006.
[33]C.C. Boon, M.A. Do, K.S. Yeo, J.G. Ma and R.Y. Zhao, “Parasitic- compensated quadrature LC oscillator,” IEE Proc.-Circuits Devices Syst., vol. 151, no. 1, pp. 45–48, Feb. 2004.
[34]S. Y. Lee and C. Y. Chen, “Analysis and design of a wide-tuning-range VCO with quadrature outputs,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 55, no. 12, pp. 1209–1213, Dec. 2008.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔