跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/15 00:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭曜禎
研究生(外文):Yao-Chen Kuo
論文名稱:新型三頻帶寬頻除二注入鎖定除頻器與低相位雜訊雙頻帶PMOS壓控振盪器之研究
論文名稱(外文):A Novel Tripleband Divider By Two Injection-Locked Frequency Divider And Low Phase Noise Dualband PMOS VCO
指導教授:張勝良徐敬文
指導教授(外文):Sheng-Lyang JangHsue, Ching-Wen
口試委員:張勝良徐敬文
口試日期:2012-07-18
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:103
中文關鍵詞:壓控振盪器注入鎖定除頻器
外文關鍵詞:VCOILFD
相關次數:
  • 被引用被引用:0
  • 點閱點閱:173
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要研究注入鎖定除頻器,以及壓控振盪器。此兩種電路是無線通訊系統中重要的兩種電路,其操作頻率範圍決定頻率合成器之頻寬。一個好的振盪器必須具有低相位雜訊之特性,以避免相鄰頻帶雜訊的混波轉換。注入鎖定除頻器經常被用作高頻除頻器,必須具有寬鎖定範圍之特性。
第一部分提出了一個有三頻帶的寬頻注入鎖定除頻器,用 TSMC 0.18 μm 1P6M CMOS技術完成. 本除二的注入鎖定除頻器是由NMOS交叉耦合對以及六階層的LC槽實現. 在供應電壓為1V時,本電路消耗功率為11.6 mW .該電路主頻帶分別為8.75 GHz(高頻帶) 5.79GHz(中頻帶)以及3.7GHz(低頻帶);除頻範圍分別為17.1 GHz到18.3GHz(高),10.1 GHz到12.7GHz(中),以及6.0 GHz 到7.7GHz(低).本電路可藉由改變可變電容的大小來切換操作頻段.電路面積為0.898×0.980mm2.
其次, 提出的是一個操作於6 GHz的串聯可調阿姆斯壯全N型壓控振盪器,該電路被TSMC 0.18 μm 1P6M CMOS技術完成.該電路是由兩個單端串連阿姆斯壯壓控振盪器組成.當供應電壓為1.3 V時,該電路的的相位雜訊在離主頻1 MHz處為-125.88 dBc/Hz,主頻為6.06 GHz. 本電路之figure of merit(FOM)為-192.8 dBc/Hz.
最後,呈現一個雙頻帶P型壓控振盪器.該電路由雙共振LC槽以及全P型的交叉偶和對組成.該電路的震盪模態分別為串聯共振(高頻)以及並聯共振(低頻),並可藉由可變電容切換頻帶.該電路的高頻帶操作在7 GHz低頻帶操作2.9GHz.本電路由TSMC 0.18 μm 1P6M CMOS實現, 在供應電壓為0.65 V時消耗功率為3.003 mW. 本電路面積為0.953×1.0 mm2.
This thesis presents the design of Injection - Locked Frequency Dividers (ILFDs) and voltage-controlled oscillator (VCO) which are two kinds of important sub-circuits in wireless telecommunication systems. Bandwidth of a frequency synthesizer is dominated by operating frequency ranges of these two blocks. A good VCO must exhibit low-phase-noise characteristic to prevent noise in adjacent frequencies from being down-converted or up-converted. We generally apply an injection-locked frequency divider (ILFD) to perform frequency division at high frequency. The wider the locking range is, the better ILFD.
Firstly, we present A triple-band wide operation range divide-by-2 injection-locked frequency divider (ILFD) using a standard the TSMC 0.18 μm 1P6M CMOS technology is presented. The ÷2 ILFD circuit is realized with a cross-coupled n-core MOS LC-tank oscillator with a 6th order LC resonator. The core power consumption of the ILFD core is 11.6 mW at the supply voltage of 1V. The divider’s free-running frequency operates at three frequency bands: 8.75 GHz, 5.79GHz and 3.7GHz, and the ILFD operation range covers a high-band from 17.1 to 18.3GHz, a middle-band from 10.1 to 12.7GHz, and a low-band from 6.0 to 7.7GHz. The band section is obtained by tuning the varactor’s control bias. The chip area is 0.898× 0.980 mm2.
Secondly, A 6 GHz series-tuned Armstrong all nMOS LC-tank voltage-controlled oscillator (VCO) is designed and implemented in a 0.18 μm CMOS 1P6M process. The designed circuit topology consists of two single-ended series-tuned Armstrong LC-tank VCOs. At the supply voltage of 1.3 V, the output phase noise of the VCO is -125.88 dBc/Hz at 1 MHz offset frequency from the carrier frequency of 6.06 GHz, and the figure of merit is -192.8 dBc/Hz. Total VCO core power consumption is 7.46 mW. Tuning range is about 370 MHz, from 5.91 GHz to 6.28 GHz, while the control voltage was tuned from 0 V to 2 V. The chip area is 0.977×0.515 mm2.
Finally, we present a dual-band p-core oscillator. The oscillator consists of a dual-resonance LC resonator and a cross-coupled switching transistor pair and it operates at the high-frequency series-resonant mode and at the low-frequency parallel-resonant mode via varactor switching bias. The oscillator can generate differential signals at the high-band 7GHz and at the low-band 2.9GHz. The proposed VCO has been implemented with the TSMC 0.18 μm 1P6M CMOS technology and the core power consumption is 3.003 mW at the dc drain-source bias of 0.65 V. The die area of the dual-band VCO is 0.953×1.0 mm2.
Abstract III
致謝 V
Table of Contents VI
List of Figures VIII
List of Tables XI
Chapter 1 Introduction 1
1.1 Background 1
1.2 Thesis Organization 3
Chapter 2 Overviews of Voltage Controlled Oscillators and Injection Locked Frequency Divider 6
2.1 Introduction 6
2.1.1 Negative-Resistance (One-Port) Oscillators 6
2.1.2 Feedback (Two-Port) Oscillators 11
2.2 The types of Oscillators 14
2.2.1 Ring Oscillator 14
2.2.2 Relaxation Oscillator 15
2.2.3 LC-Tank Oscillators 16
2.2.4 Parallel RLC-Tank Oscillators 27
2.3 Voltage-Controlled Oscillators 28
2.3.1 Important Parameters of VCO 29
2.3.2 Phase Noise in Oscillator 34
2.3.3 Definition of Phase Noise 34
2.3.4 Noise 42
2.4 Resistors, Capacitors and Inductors in Semiconductor Technologies 47
2.4.1 Resistors 47
2.4.2 Capacitors 49
2.4.3 MOSFET Varactors 50
2.4.4 Inductors and Transformer 54
2.5 Principle of Injection-Locked Frequency Dividers 66
2.5.1 Switch ILFD 70

Chapter 3 72
A Triple-Band Wide-band ÷2 CMOS Injection-Locked Frequency Divider 72
3.1 Introduction 72
3.2 Circuit Design 73
3.3 Measurement Results 76
3.4 Conclusion 81
Chapter 4 A Novel Differential Series-Tuned Armstrong VCO 82
4.1 Introduction 82
4.2 Circuit Design 83
4.3 Measurement Results 85
4.4 Conclusion 88
Chapter 5 A P-core Dual-Band Oscillator with Series- and Parallel- Resonant Mode Switching 89
5.1 Introduction 89
5.2 Circuit Design 91
5.3 Measurement Results 94
5.4 Conclusion 98
Chapter 6 Conclusion 99
Reference 101
[1]J. Roggers, C. Plett, Radio Frequency Integrated Circuit Design, Artech House, 2003.
[2]B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, 2001.
[3]N. M. Nguyen, and R. G. Meyer, “Start-up and frequency stability in high-frequency oscillators,” IEEE Journal of Solid-State Circuits, vol. 27, pp. 810-820, May 1992.
[4]B. Razavi, RF Microelectronics, Prentice Hall PTR, 1998.
[5]T. H. Lee, The Design of CMOS Radio Frequency Integrated Circuits, Cambridge University Press 1998.
[6]H.R. Rategh, H. Samavati, T.H. Lee, “A 5 GHz, 1 mW CMOS voltage controlled differential injection locked frequency divider,” Custom Integrated Circuits Conference, pp. 517-520 May 1999
[7]D. B. Leeson, “A simple model of feedback oscillator noise spectrum,” Proceedings of the IEEE, vol. 54, no. 2, pp. 329–330, Feb. 1966.
[8]A. Hajimiri and T. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179–194, Feb. 1998.
[9]Marc Tiebout, Low Power VCO Design in CMOS, Springer 2009.
[10]L. Dai and R. Harjani, "Design of low-phase-noise CMOS ring oscillators." IEEE Trans. Circuits Syst. II, vol. 49, pp. 328-338, 2002.
[11]B. Razavi , “A study of phase noise in CMOS oscillators,” IEEE J. Solid-State Circuits, vol. 31, pp. 331–343, Mar. 1996.
[12]P. Andreani, and S. Mattisson, “On the Use of MOS Varactors in RF VCO’s,” IEEE Journal of Solid-State Circuits, vol. 35, pp. 905-910, June 2000.
[13]H. M. Greenhouse, “Design of planar rectangular microelectronic inductors,” IEEE Transactions on Parts, Hybrids, and Packaging, vol. 10, pp. 101-109, Jun 1974.
[14]J. Craninckx and M. S. J. Steyaert, “A 1.8 GHz low-phase-noise CMOS VCO using optimized hollow spiral inductors,” IEEE J. Solid-State Circuits, vol. 32, no. 5, pp. 736–744, May 1997.
[15]P. Yue, C. Ryu, JackLau, T. Lee, and S. Wong, “A physical model for planar spiral inductors on silicon,” 1996 International Electron Devices Meeting Technical Digest, pp. 155–158, Dec. 1996.
[16]J. R. Long, “Monolithic transformers for silicon RF IC design,” IEEE J. Solid-State Circuits, vol. 35, no. 9, pp. 1368–1382, Sept. 2000.
[17]R. Adler, “A study of locking phenomena in oscillators,” in Proceedings of the IRE, vol. 34, no. 6, pp. 351–357, June 1946.
[18]S.-L. Jang, Y.-K. Wu, C.-C. Liu and J.-F. Huang, ” A dual-band CMOS voltage-controlled oscillator implemented with dual-resonance LC tank,” IEEE Microw. Wireless Compon. Lett., vol. 19, No. 12, pp.816-818, Dec. 2009.
[19]A. Bevilacqua et al., “Transformer-based dual-mode voltage-controlled oscillators,” IEEE Trans. Circuits Syst. II, Expr. Briefs, vol. 54, no. 4, pp. 293–297, Apr. 2007.
[20]B. Catli, M. M. Hella, "A 1.94 to 2.55 GHz, 3.6 to 4.77 GHz tunable CMOS VCO based on double-tuned, double-driven coupled resonators," IEEE J. Solid State Circuits, vol.44, no.9, pp.2463-2477, Sept. 2009.
[21]S.-L. Jang, C.-C. Shih, C.-W. Chang, C.-C. Liu, and J.-F. Huang, ” A dual-band divide-by-2 Injection locked frequency divider in 0.35 μm SiGe BiCMOS,” Micro. Opti. Tech. Lett., pp.2762-2765, Dec., 2010.
[22]S.-L. Jang, L.-T. Chou, J.-F. Huang, and C.-W. Chang, ” A dual-band dual-resonance quadrature injection-locked frequency divider,” IEICE Trans. on Electron., Vol.E94-C,No.8,pp.1336-1339, Aug. 2011.
[23]S.-L. Jang, C.-W. Chang, J.-Y. Wun, and M.-H. Juang, ” Quadrature injection-locked frequency dividers using dual-resonance resonator,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 1, pp. 37-39, Jan. 2011.
[24]1. A. Hajimiri and T. Lee, “Design issues in CMOS differential LC oscillators,” IEEE J. of Solid-State Circuits, vol. 34, no. 5, pp. 717-724, May 1999.
[25]2. R. Aparicio and A. Hajimiri, “A noise-shifting differential Colpitts VCO,” IEEE J. of Solid-State Circuits, vol. 37, no. 12, pp. 1728-1736, Dec. 2002.
[26]C.-Y. Cha and S.-G. Lee, “A complementary Colpitts oscillator in CMOS technology,” IEEE Trans.on Microw. Theory and Tech., vol. 53, no. 3, pp. 881-887, Mar. 2005.
[27]S.-H. Lee, Y.-H. Chuang, S.-L. Jang, and C.-C. Chen, “Low-phase noise Hartley differential CMOS voltage controlled oscillator,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 2, pp. 145-147, Feb. 2007.
[28]S.-L. Jang, Y.-J. Song, and C.-C. Liu, ” A differential Clapp VCO in 0.13µm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 6, pp. 404-406, June, 2009.
[29]S.-L. Jang, Y.-K. Wu, C.-C. Liu and J.-F. Huang, ” A dual-band CMOS voltage-controlled oscillator implemented with dual-resonance LC tank,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 12, pp. 816-818, Dec. 2009.
[30]N. T. Tchamov, T. Niemi, and N. Mikkola, “High-performance VCO based on Armstrong oscillator topology,” IEEE J. of Solid-State Circuits., vol. 36, no. 1, pp. 139-141, Jan. 2001.
[31]Z. Li and K. K. O, “A low-phase-noise and low-power multi-band CMOS voltage-controlled oscillator,” IEEE J. Solid-State Circuits, vol. 40, no. 6, pp. 1296–1302, Jun. 2005.
[32]M. Tiebout, “A CMOS fully integrated 1 GHz and 2 GHz dual-band VCO with a voltage controlled inductor,” in Proc. Eur. Solid-State Circuits Conf. (ESSCIRC), Florence, Italy, Sep. 2002, pp. 799–802.
[33]S.-L. Jang, Y.-K. Wu, C.-C. Liu and J.-F. Huang, ” A dual-band CMOS voltage-controlled oscillator implemented with dual-resonance LC tank,” IEEE Microw. Wireless Compon. Lett., vol. 19, No. 12, pp.816-818, Dec. 2009.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊