(18.232.55.103) 您好!臺灣時間:2021/04/23 01:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:葉家蓉
研究生(外文):Chia-jung Yeh
論文名稱:靜息態功能性磁振造影:迴歸分析的影響
論文名稱(外文):Resting-State Functional Magnetic Resonance Imaging: The Impact of Regression Analysis
指導教授:黃騰毅黃騰毅引用關係
指導教授(外文):Teng-yi Huang
口試委員:黃騰毅
口試日期:2012-07-13
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:24
中文關鍵詞:功能性磁振造影靜息態大腦預設模式網路功能性連結迴歸
外文關鍵詞:fMRIresting statedefault mode networkfunctional connectivityregression
相關次數:
  • 被引用被引用:1
  • 點閱點閱:482
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
靜息態大腦的功能性磁振造影近年來被廣泛討論著,由於它的實驗設計簡單,對於受試者無任何侵入性,也沒有複雜的任務指令,所以即使對於孩童、老人,或者是病人,也容易進行休息狀態時的掃瞄,因此,它常被用於大腦神經疾病方面的研究。在醫學相關研究中,利用休息狀態的資料以及經過分析後出現的功能性連結。以得到的連結,將正常人與病人進行對照,並比較其在特定連結上的差異,進而判斷是否可能患有疾病。其中“迴歸”被認為是分析休息狀態資料時重要且有效的步驟,用以降低生理雜訊對影像品質的干擾,進而得到較清晰的功能性連結。然而,迴歸對於資料影響如何,在影像結果的作用又為何,目前仍存有爭議。在本研究中,利用將種子點設定於大腦預設模式網路為分析方法,並藉由將生理雜訊變數分成五種不同的組合,以進行不同的分析步驟,來觀察其對於資料上的影響,以及影像上的變化,發現迴歸這一分析步驟雖可幫助我們方便觀察連結的成像,但卻會對原始資料產生很大的變化。除此之外,可能會產生類似於假影的負相關性連結,這是目前研究還無法明確解釋的現象。總結來說,經由本論文的研究,我們建議對靜息態大腦功能性造影進行資料分析時,分別得到使用全腦訊號迴歸與不使用迴歸的兩組資料,來比較其結果。當這兩種資料所得到的統計意義不同時,我們就必須小心解釋靜息態實驗所得到的資料。若不需要負相關性連結的資訊,我們則建議不使用全腦訊號迴歸的步驟,以免產生假性的連結資料。
Resting state functional magnetic resonance imaging (rsfMRI) has been widely investigated in recent years, due to its relatively simple and non-invasive experimental design. During the experiment, the operator requires neither complex instructions nor preparing the stimuli facilities. The rsfMRI reveals the brain functional connectivity which has been linked to brain diseases. In the pre-processing steps analyzing rsfMRI, the "regression" is considered an effective step to reduce the interference of the physiological noise on the signal time course. However, it remains a debate whether the regression method benefits the analysis of rsfMRI. In the present study, we used seed-based method to obtain the brain default mode network analysis methods using five combinations of the regression methods. The results reveal that the regression of global mean curve plays a major role of the preprocessing steps. Regressing out global mean signal or not may produce completely different rsfMRI results. This step not only increases the inter-subject variations but also produces anticorrelated brain areas. The anticorrelated brain areas produced by global signal removal are currently under debate. Care should be taken in interpreting datasets processed by the regression of Global-curve.
Abstract I
摘要 II
致謝 III
Table of contents IV
1. Introduction 1
2. Materials and methods 5
2.1 Subjects and in vivo experiment 5
2.2 Image pre-processing 6
2.3 Regression of nuisance variances 7
2.4 Data analysis: functional connectivity of DMN 8
3. Results 10
4. Discussions and Conclusion 18
References 21
Beckmann, C. F., M. DeLuca, et al. (2005). "Investigations into resting-state connectivity using independent component analysis." Philos Trans R Soc Lond B Biol Sci 360(1457): 1001-1013.
Biswal, B., F. Z. Yetkin, et al. (1995). "Functional connectivity in the motor cortex of resting human brain using echo-planar MRI." Magn Reson Med 34(4): 537-541.
Boxerman, J. L., P. A. Bandettini, et al. (1995). "The intravascular contribution to fMRI signal change: Monte Carlo modeling and diffusion-weighted studies in vivo." Magn Reson Med 34(1): 4-10.
Buckner, R. L., J. R. Andrews-Hanna, et al. (2008). "The brain's default network: anatomy, function, and relevance to disease." Ann N Y Acad Sci 1124: 1-38.
Buzsaki, G., K. Kaila, et al. (2007). "Inhibition and brain work." Neuron 56(5): 771-783.
Carbonell, F., P. Bellec, et al. (2011). "Global and system-specific resting-state FMRI fluctuations are uncorrelated: principal component analysis reveals anti-correlated networks." Brain Connect 1(6): 496-510.
Castellanos, F. X., D. S. Margulies, et al. (2008). "Cingulate-precuneus interactions: a new locus of dysfunction in adult attention-deficit/hyperactivity disorder." Biol Psychiatry 63(3): 332-337.
Cordes, D., V. M. Haughton, et al. (2000). "Mapping functionally related regions of brain with functional connectivity MR imaging." AJNR Am J Neuroradiol 21(9): 1636-1644.
Fair, D. A., A. L. Cohen, et al. (2008). "The maturing architecture of the brain's default network." Proc Natl Acad Sci U S A 105(10): 4028-4032.
Fox, M. D., A. Z. Snyder, et al. (2005). "The human brain is intrinsically organized into dynamic, anticorrelated functional networks." Proc Natl Acad Sci U S A 102(27): 9673-9678.
Fox, M. D., D. Zhang, et al. (2009). "The global signal and observed anticorrelated resting state brain networks." J Neurophysiol 101(6): 3270-3283.
Glover, G. H., T. Q. Li, et al. (2000). "Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR." Magn Reson Med 44(1): 162-167.
Greicius, M. (2008). "Resting-state functional connectivity in neuropsychiatric disorders." Curr Opin Neurol 21(4): 424-430.
Greicius, M. D., B. Krasnow, et al. (2003). "Functional connectivity in the resting brain: a network analysis of the default mode hypothesis." Proc Natl Acad Sci U S A 100(1): 253-258.
Greicius, M. D., G. Srivastava, et al. (2004). "Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI." Proc Natl Acad Sci U S A 101(13): 4637-4642.
Kennedy, D. P. and E. Courchesne (2008). "The intrinsic functional organization of the brain is altered in autism." Neuroimage 39(4): 1877-1885.
Kwong, K. K., J. W. Belliveau, et al. (1992). "Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation." Proc Natl Acad Sci U S A 89(12): 5675-5679.
Lu, H., Y. Zuo, et al. (2007). "Synchronized delta oscillations correlate with the resting-state functional MRI signal." Proc Natl Acad Sci U S A 104(46): 18265-18269.
Murphy, K., R. M. Birn, et al. (2009). "The impact of global signal regression on resting state correlations: are anti-correlated networks introduced?" Neuroimage 44(3): 893-905.
Qiu, E. C., S. Y. Yu, et al. (2012). "Altered regional homogeneity in spontaneous cluster headache attacks: a resting-state functional magnetic resonance imaging study." Chin Med J (Engl) 125(4): 705-709.
Shmueli, K., P. van Gelderen, et al. (2007). "Low-frequency fluctuations in the cardiac rate as a source of variance in the resting-state fMRI BOLD signal." Neuroimage 38(2): 306-320.
Wang, D. D., Z. Li, et al. (2010). "Neural circuits and temporal plasticity in hindlimb representation of rat primary somatosensory cortex: revisited by multi-electrode array on brain slices." Neurosci Bull 26(3): 175-187.
Wang, K., M. Liang, et al. (2007). "Altered functional connectivity in early Alzheimer's disease: a resting-state fMRI study." Hum Brain Mapp 28(10): 967-978.
Zang, Y. F., Y. He, et al. (2007). "Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI." Brain Dev 29(2): 83-91.
Zou, Q. H., C. Z. Zhu, et al. (2008). "An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF." J Neurosci Methods 172(1): 137-141.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔