(3.236.228.250) 您好!臺灣時間:2021/04/17 12:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳佳斌
研究生(外文):Chia-Pin Wu
論文名稱:奇異擾動方法於以估測器為基礎之控制器設計應用
論文名稱(外文):Using Singular Perturbation Methods in Observer-based Controller Design
指導教授:施慶隆教授
指導教授(外文):Ching-Long Shih
口試委員:施慶隆教授
口試日期:2012-07-27
學位類別:博士
校院名稱:國立臺灣科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:83
中文關鍵詞:奇異擾動干擾估測器速度估測動態輸出回授
外文關鍵詞:singular perturbationdisturbance observervelocity estimationdynamic output feedback
相關次數:
  • 被引用被引用:0
  • 點閱點閱:95
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要是將奇異擾動(singular perturbation)理論應用到控制器的設計。首先,將奇異擾動應用到機械系統的輸出回授(output feedback)類似比例微分(proportional-derivative, PD)控制器的設計,只需測量位移量即可進行速度控制,控制器演算法為低階動態輸出回授控制的法則,簡單而且容易實現。另外,為因應含有不確定項及未知干擾的系統,提出以Lyapunov定理分析經由代數Riccati與矩陣不等式求解的回授系統穩定性控制法則。本論文最後針對非匹配式未定參數(mismatched parameter uncertainties)及匹配式非線性擾動(matched nonlinear perturbations)的線性MIMO系統提出干擾估測器(disturbance observer)為主的控制演算法,並應用高增益積分估測器做輸出回授的控制器,使輸入干擾快速收歛。最後以數值範例來驗證可行性。
The thesis is mainly to design the controller by applying the theory of singular perturbation. First of all, using the singular perturbation technique to design the output feedback controller of mechanic systems, it is similar to the design of a proportional-derivative control law. We can precede the speed control by only measuring the displacement. The controller algorithm is the rule of low-order dynamic output feedback control. It is simple and easily accomplished. Besides, when the mechanical system contains uncertain items, this thesis presents robust stability of the closed-loop system. It also offers the analysis of Lyapunov theory by solving a Riccati algebra equation and a linear matrix inequality. Furthermore, for the mismatched parameter uncertainties and matched nonlinear perturbations in a linear MIMO system, the thesis proposes a disturbance-observer based controller in which the input disturbance can be effectively estimated by using a high-gain integration observer. Finally, it is verified the practicability by numerical examples.
摘 要 I
Abstract II
目 錄 IV
符號索引 V
圖表索引 VIII
第1章 緒論 1
1.1簡介 1
1.2文獻探討 2
1.3研究動機 5
1.4論文架構 5
第2章 奇異擾動的基本理論 7
2.1簡介 7
2.2 階函數 8
2.2.1大O(big-oh)符號 9
2.2.2小o(little-oh)符號 14
2.2.3大Ω(big-omega) 16
2.2.4小ω(little-omega) 17
2.2.5 大Θ(big-theta)符號 17
2.3典型的奇異擾動(standard singular perturbation)模型 18
第3章 奇異擾動連續時間系統的控制器設計 26
3.1前言 26
3.2 輸出回授PD控制器設計 29
3.3輸出回授含不確定項的機械系統PD控制器設計 34
3.4 範例 41
第4章 干擾估測器為主的最小相位不確定性系統輸出回授控制器設計 53
4.1 簡介 53
4.2 系統問題描述 55
4.3 干擾估測器為主的控制器設計 56
4.4範例 63
第5章 結論及未來展望 70
參考文獻 71
作者簡介 81
著 作 82
[1]Poincaré, H., Sur Les Intégrales Irréguliéres Des Équations Linéaires, Acta Math. 8, pp. 295-344 (1886)
[2]Poincaré, H., Les Méthodes Nouvelles De La Mécanique Céleste, 3 Vols., Gauthier-Villars, Paris (1892, 1893, 1899)
[3]Stieltjes, Th., Ann. De L’Ecole Norm. Sup., Vol. 3, No.3, pp. 201-258 (1886)
[4]du Bois-Reymond, P., Théorie Générale Des Fonctions, Hermann, Paris (1887)
[5]Ferdinand V., Methods and Applications of Singular Perturbations Boundary Layers and Multiple Timescale Dynamics, New York, NY :Springer Science+Business Media, Inc. (2005)
[6]Landau, E., Handbuch Der Lehre Von Der Verteilung Der Primzahlen, B. G. Teubner: Leipzig, Germany and AMS Chelsea Publishing: Providence, RI, USA (1909)
[7]Knuth D. and Bendix P., “Simple Word Problems in Universal Algebras. Computational Problems in Abstract Algebra”. Ed. Leech J., Pergamon Press, pp. 263-297 (1970)
[8]Knuth, D. E. “Algorithms,” Scientific American, Vol. 243, pp.63-80 (1977)
[9]Knuth D.E., Morris J. and Pratt V., “Fast Pattern Matching in Strings,” SIAM Journal on Computing, Vol. 6, No. 2, pp. 323-350 (1977)
[10]Knuth, D. E. and Moore, R. W., “An Analysis of Alpha-Beta Priming,” Artificial Intelligence ,Vol. 6, pp. 293-326 (1975)
[11]Knuth, D. E., “Algorithmic Thinking and Mathematical Thinking, ” The American Mathematical Monthly, Vol. 92, pp. 170-181 (1985)
[12]Tikhonov, A. N., “Systems of Differential Equations Containing Small Parameters in the Derivatives”, Mat. Sb. (N.S.), Vol. 31, No.73, pp.575-586 (1952)
[13]Khalil, H. K., Nonlinear Systems, 3rd ed., New Jersey: Prentice-Hall (2002)
[14]Noethen, L. and Walcher, S., “Tikhonov’s Theorem and Quasi-steady State,” Discrete and Continuous Dynamical Systems Series B, Vol. 16, No. 3, pp.945-961 (2011)
[15]Kokotovic, P. V., Khail, H. K. and O’Reilly, J., Singular Perturbation Methods in Control: Analysis and Design, New York: Academic (1986)
[16]謝應齊,奇異攝動方法及其在大氣科學中的應用,雲南大學出版社,(1989)。
[17]Skinner, L. A., Singular Perturbation Theory, Boston, MA :Springer Science+Business Media, LLC (2011)
[18]Johnson, R. S., Singular Perturbation Theory: Mathematical and Analytical Techniques with Applications to Engineering, Boston, MA: Springer Science + Business Media, Inc. Boston (2005)
[19]Teixeira, M. A., “Perturbation Theory for Non-smooth Systems,” Mathematics of Complexity and Dynamical Systems, pp. 1325-1336 (2011)
[20]Eckhaus, W., Asymptotic Analysis of Singular Perturbations, North-Holland, Amsterdam (1979)
[21]O'Malley, Jr., R.E., Topics in Singular Perturbations, Adv. Math. 2, pp. 365-470 (1968)
[22]O'Malley, Jr., R.E., Introduction to Singular Perturbations, Academic Press, New York (1974)
[23]Prandtl, L., Uber Flüussigheitsbewegung Bei Sehr Kleine Reibung, Proceedings 3rd International Congress of Mathematicians, Heidelberg (1904, (Krazer, A., ed.), pp. 484-491 (1905), Leipzig. (Also Publ. by Kraus Reprint Ltd, Nendeln/ Liechtenstein (1967)
[24]Prandtl, L. and Tietjens, O.G., Applied Hydro- and Aeromechanics, McGraw-Hill, New York (1934)
[25]Nayfeh, A. H., Frontmatter in Perturbation Methods, Wiley-VCH Verlag GmbH, Weinheim, Germany (2007)
[26]Koshy, T., Discrete Mathematics with Applications, Elsevier (2004)
[27]Nguyen, T., Su, W. C. and Gajic, Z., “Singular Perturbation Analysis of Discrete-time Output Feedback Sliding Mode Control with Disturbance Attenuation,” in Proc. American Control Conference, St. Louis, USA, pp. 757-762 (2009)
[28]Young, K. K. D., Kokotovic, P. V. and Utkin, V. I., “A Singular Perturbation Analysis of High-gain Feedback Systems,” IEEE Trans. on Automatic Control, Vol. 22, pp. 931-938 (1977)
[29]Pang,C. K., Lewis, F. L., Ge, S. S., Guo, G., Chen, B. M., and Lee, T. H., “Singular Perturbation Control for Vibration Rejection in HDDs Using the PZT Active Suspension as Fast Subsystem Observer,” IEEE Trans. Ind. Electron., Vol. 54, No. 3, pp. 1375-1386, Jun (2007)
[30]O'Malley, Jr., R.E., Boundary Layer Methods for Nonlinear Initial Value Problems, SIAM Rev, Vol. 13, pp. 425-434 (1971)
[31]O'Malley, Jr., R.E., Phase-plane Solutions to Some Singular Perturbation Problems, J. Math. Anal. Appl., Vol. 54, pp. 449-466 (1976)
[32]O'Malley, Jr., R.E., Singular Perturbation Methods for Ordinary Differential Equations, Applied Mathematical Sciences 89, Springer-Verlag, New York (1991)
[33]Flaherty, J.E. and O'Malley, R.E., “Analysis and Numerical Methods for Nonlinear Singular Singularly Perturbed Initial Value Problems,” SIAM J. Appl. Math. , Vol. 38, pp. 225-248 (1980)
[34]Ramnath, R. V., Computation and Asymptotics, SpringerBriefs in Computational Mechanics (2012)
[35]Kelley, W.G. and Peterson, A. C., The Theory of Differential Equations: Classical and Qualitative, Universitext 278, Springer Science+Business Media, LLC (2010)
[36]Zienkiewicz, O. C., Taylor, R. L., and Zhu, J. Z., The Finite Element Method Set(Sixth Edition), Elsevier Ltd (2005)
[37]陳永平、張浚林,可變結構控制設計(修訂版),全華科技圖書股份有限公司,台北,(2002)。
[38]Park, J. J. and Kuipers, B., “A Smooth Control Law for Graceful Motion of Differential Wheeled Mobile Robots in 2D Environment,” IEEE International Conference on Robotics and Automation, pp.4896-4902 (2011)
[39]Chakrabortty, A. and Scholtz, E., “Time-Scale Separation Designs for Performance Recovery of Power Systems With Unknown Parameters and Faults,” IEEE Transactions on Control Systems Technology, Vol. 19, No. 2, pp.382-390 (2011)
[40]Sharma, R., Nešic´, D., and Manzie, C., , “Model Reduction of Turbocharged (TC) Spark Ignition (SI) Engines,” IEEE Transactions on Control Systems Technology, Vol. 19, No. 2, pp.297-310 (2011)
[41]Chu,E. K., and Datta, B. N., “Numerically Robust Pole Assignment for Second-order Systems,” Int. J. Control, Vol. 64, pp. 1113-1127 (1996)
[42]Duan, G. R., and Liu, G. P., “Complete Parametric Approach for Eigenstructure Assignment in a Class of Second-order Linear Systems,” Automatica, Vol. 38, pp. 725-729 (2002)
[43]Cavallo, A., and Natale, C., , “Output Feedback Control Based on a High-order Sliding Manifold Approach,” IEEE Trans. on Automatic Control, Vol. 48, pp. 469-472 (2003)
[44]Qu, Z., and Dorsey, J., “Robust Tracking Control of Robots by a Linear Feedback Law,” IEEE Trans. on Automatic Control, Vol. 36, pp. 1081-1084 (1991)
[45]Qu, Z., “Global Stability of Trajectory Tracking of Robot Under PD Control,” Dynamics and Control, Vol. 4, pp. 59-71 (1994)
[46]Paden, B., and Panja, R., “Globally Asymptotically Stable ‘PD+’ Controller for Robot Manipulators,” Int. J. Control, Vol. 47, pp. 1697-1712 (1988)
[47]Berghuis, H., and Nijmeijer, H., “Robust Control of Robots via Linear Estimated State Feedback,” IEEE Trans. on Automatic Control, Vol. 39, pp. 2159-2162 (1994)
[48]Su, Y. X., Zheng, C. H., Sun, D., and Duan, B. Y., “A Simple Nonlinear Velocity Estimator for High-performance Motion Control,” IEEE Trans. on Industrial Electronics, Vol. 52, pp. 1161-1169 (2005)
[49]Xian, B., de Queiroz, M. S., Dawson, D. M., and McIntyre, M. L., “A Discontinuous Output Feedback Controller and Velocity Observer for Nonlinear Mechanical Systems,” Automatica, Vol. 40, pp. 695-700 (2004)
[50]Davila, J., Fridman, L., and Levant, A., “Second-order Sliding-mode Observer for Mechanical Systems,” IEEE Trans. Automatic Control, Vol. 50, pp. 1785-1789 (2005)
[51]Gadewadikar, J., Lewis, F. L., Xie, L., Kucera, V., and Abu-Khalaf, M., “Parameterization of All Stabilizing H∞ Static State-feedback Gains: Application to Output-feedback Design,” Automatica, Vol. 43, pp. 1597-1604 (2007)
[52]Syrmos, V. L., Abdallah, C. T., Dorato, P., and Grigoriadis, K., “Static Output Feedback-a Survey,” Automatica, Vol. 33, pp. 125-137 (1997)
[53]Schumacher, J. M., “Almost Stability Subspaces and High Gain Feedback,” IEEE Trans. on Automatic Control, Vol. 29, pp. 620-628 (1984)
[54]Steinberg, A., and Ryan, E. P., “Dynamic Output Feedback Control of a Class of Uncertain Systems,” IEEE Trans. on Automatic Control, Vol. 31, pp. 1163-1165 (1986)
[55]Lewis, A. S., and Sinha, A., “Sliding Mode Control of Mechanical Systems with Bounded Disturbances via Output Feedback,” AIAA Journal of Guidance, Control and Dynamics, Vol. 22, pp. 235-240 (1999)
[56]Lewis, A. S., “Robust Output Feedback Using Sliding Mode Control,” AIAA Journal of Guidance, Control and Dynamics, Vol. 24, pp. 873-878 (2001)
[57]Vidyasagar, M., “Nonlinear Systems Analysis,” Prentice-Hall, Inc., Englewood Cliffs, NJ (1993)
[58]Junkins, J. L., and Kim, Y., Introduction to Dynamics and Control of Flexible Structures, AIAA Education Series, Washington D. C. (1993)
[59]Maragari, S., and Driessen, B. J., “Globally Exponential Control/observer for Tracking in Robots without Velocity Measurement,” Asian Journal of Control, Vol. 14, pp. 1-11 (2012)
[60]Zavala-Rio, A., Aguinaga-Ruiz, E., and Santibanez, V., “Global Trajectory Tracking Through Output Feedback for Robot Manipulator with Bounded Inputs,” Asian Journal of Control, Vol. 13, pp. 430-438 (2011)
[61]Boyd, S. P., Ghaoui, L., El, Feron, E., and Balakrishnan, V., Linear Matrix Inequality, Philadelphia, PA: SIAM (1994)
[62]Choi, H. H., “Variable Structure Output Feedback Control Design for a Class of Uncertain Dynamic Systems”, Automatica, Vol. 38, pp. 335-341 (2002)
[63]Xiang, J., Wei, W., and Su, H., “An ILMI Approach to Robust Static Output Feedback Sliding Mode Control”, International Journal Control, Vol. 79, pp. 959-967 (2006)
[64]Zhang, J., and Xia Y., “Design of Static Output Feedback Sliding Mode Control for Uncertain Linear Systems”, IEEE Trans. Industrial Electronics, Vol. 57, pp. 2161-2170 (2010)
[65]Andrade-Da Silva, J. M., Edwards, C., and Spurgeon, S. K., “Sliding-mode Output Feedback Control Based on LMIs for Plants with Mismatched Uncertainties”, IEEE Trans. Industrial Electronics, Vol. 56, pp. 3675-3683 (2009)
[66]Chang, J. L., “Applying Sliding-mode Control to Servomechanism Problem with Only Output Feedback”, IEE Proceedings D Control Theory and Applications, Vol. 150, pp. 28-36 (2003)
[67]Jabbari, F., “Output Feedback Controller for System with Structure Uncertainty”, IEEE Trans. on Automatic Control, Vol. 42, pp. 715-719 (1997)
[68]Yan, X. G., Edwards, C., and Spurgeon, S. K., “Dynamic Sliding Mode Control for a Class of Systems with Mismatched Uncertainty,” European Journal Control, Vol. 11, pp. 1-10 (2005)
[69]Edwards C., and Spurgeon, S. K., Sliding Mode Control Theory and Application, Taylor & Francis, London (1998)
[70]Ohnishi, K., Shibata, M., and Murakami, T., “Motion Control for Advanced Mechatronics,” IEEE/ASME Transactions on Mechatronics, Vol. 1, No. 1, pp. 56-67 (1996)
[71]Liu, C. S., and Peng, H., “Inverse-dynamics Based State and Disturbance Observers for Linear Time-invariant Systems,” Trans. ASME J. Dynamic System Measurement Control, Vol. 124, pp. 375-381 (2002)
[72]Du, C., Li, H., Thum, C. K., Lewis, F. L., and Wang, Y., “Simple Disturbance Observer for Disturbance Compensation,” IET Control Theory and Applications, Vol. 4, pp. 1748-1755 (2009)
[73]Corless, M., and Tu, J., “State and Input Estimation for a Class of Uncertain Systems,” Automatica, Vol. 34, pp. 757-764 (1998)
[74]She, J. H., Fang, M., Ohyama, Y., Hashimoto, H., and Wu, M., “Improving Disturbance-rejection Performance Based on an Equivalent-input-disturbance Approach,” IEEE Trans. on Industrial Electronics, Vol. 55, pp. 380-389 (2008)
[75]Darouach, M., Zasadzinski M., and Xu, S. J., “Full-order Observers for Linear Systems with Unknown Inputs,” IEEE Transactions on Automatic Control, Vol. 39, No.3, 606-609 (1994)
[76]Hou M., and Müller, P. C., “Design of Observers for Linear Systems with Unknown Inputs,” IEEE Transactions on Automatic Control, Vol. 37, No.6, 871-875 (1992)
[77]Corless, M., and Tu, J., “State and Input Estimation for a Class of Uncertain Systems,” Automatica, Vol. 34, pp. 757-764 (1998)
[78]Gadewadikar, J., Lewis, F. L., and Abu-Khalaf, M., “Necessary and Sufficient Conditions for H-∞ Static Output-Feedback Control,” Journal of Guidance, Control, and Dynamics, Vol. 29, No. 4, pp. 915-920 (2006)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔