跳到主要內容

臺灣博碩士論文加值系統

(44.211.31.134) 您好!臺灣時間:2024/07/25 18:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳冠廷
研究生(外文):Guan-ting Chen
論文名稱:嵌入式主動袖套壓力控制血壓計開發
論文名稱(外文):Development of an Embedded BP Measurement Instrument with Active Cuff Pressure Control Schemes
指導教授:郭重顯郭重顯引用關係
指導教授(外文):Chung-Hsien Kuo
口試委員:郭重顯
口試日期:2012-07-27
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:58
中文關鍵詞:電子血壓計共振法主動式袖套壓力控制血壓監控嵌入式系統
外文關鍵詞:Electronic blood pressure instrumentoscillometryactive cuff pressure controlblood pressure monitoringembedded systems
相關次數:
  • 被引用被引用:0
  • 點閱點閱:313
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文提出一主動袖套壓力控制血壓計,其採用共振法進行血壓之量測。相較於傳統袖套式電子血壓計量測方法,本研究最大特色在於使用可變體積壓力艙,並透過改變壓力艙之體積來達成量測血壓時之袖套壓力調整目的。此一可變體積壓力艙之運作係由馬達驅動線性螺桿來改變單動式氣壓缸內活塞之位置,並實現閉回路壓力控制方法;其大幅消弭了傳統袖套式電子血壓計在氣壓幫浦加壓時之氣體擾流與噪音。此一主動袖套壓力控制血壓計可於加壓過程即時量得血壓值,並能於量測到收縮壓後快速抽回袖套內之空氣,大幅降低量測時間與不舒適感。此外,此一方法亦可自動規劃非線性之加壓與減壓曲線,以同時兼顧到量測時間與解析度,並能藉由持續性多次的加壓與減壓過程來增加血壓值的量測準確度。因此可應用於加護病房之非侵入式長時間血壓監控用途。本研究亦以Android嵌入式系統開發監控人機介面,以支援未來手持式健康監控系統之相關應用。最後,本研究以共振法原理之市售血壓計(Microlife BP2BO0)進行量測重現性比較。在同一使用者連續十次之量測下,實驗結果顯示市售血壓計收縮壓量測標準差為4.17、舒張壓量測標準差為3.64。而本研究之血壓計量測收縮壓之標準差為3.72,舒張壓之標準差為3.25,因此,量測重現性比市售共振法血壓計高;此外,量測時間上也比市售血壓計平均快上6秒(16%)。
This study proposes a cuff oscillometry blood pressure (BP) measurement approach based on active cuff pressure control schemes (ACPCS). The most important feature of the proposed ACPCS-based BP measurement approach is the use of variable volume pressure chamber (VVPC) technology for altering the cuff pressure when compared to conventional electronic cuff BP instruments. The VVPC is operated with a closed-loop pressure control scheme, and it is activated in terms of altering the piston position of a single-acting cylinder that is driven by a motor with a linear screw. Therefore, the VVPC significantly eliminates the disturbance and noise at the injecting air stage of using a conventional BP pump. More importantly, the ACPCS-based BP measurement approach is capable of obtaining the BP at the air injection stage, and the air in the cuff can be fast extracted to the VVPC when the systolic blood pressure (SBP) is detected. In this manner, the ACPCS-based BP measurement approach may benefit the measurement time and user comfort. At the same time, nonlinear pressure courses for injecting and extracting air are also automatically generated to achieve the considerations of both measurement time and resolution. Moreover, continuous and repetitive injecting and extracting courses are desirable for improving the measurement accuracy. Hence, such a BP solution is applicable for invasive long-term BP monitoring in intensive care units. A graphical-user-interface (GUI) is developed with an Android-based embedded platform, and it can be used for future hand-held healthcare applications. Finally, a cuff-oscillometry-based commercial BP instrument (Microlife BP2BO0) is used for the performance comparison of measurement repeatability. Based on ten times continuous measurements of a subject, the measurements of standard deviations of systolic and diastolic pressures of the commercial BP instrument are 4.17 and 3.64, respectively. The systolic and diastolic pressures of the proposed BP instrument are 3.72 and 3.25, respectively. The experiment results demonstrated that the proposed BP instrument performs better measurement repeatability. Moreover, the measurement time could reduce 6 seconds (i.e., 16%) when compared to the examined commercial BP instrument.
誌謝 iii
摘要 iv
Abstract v
目錄 vi
圖目錄 viii
表目錄 xi
第一章 緒論 1
1.1 背景與動機 1
1.2 研究目的 2
1.3 論文架構 3
1.4 文獻回顧 4
1.4.1 低壓量測共振法 4
1.4.2 非低壓量測共振法 6
1.4.3 光體積變化描記圖 7
1.4.4 其他量測方法 10
第二章 主動壓力控制血壓計 14
2.1 設計概念 14
2.2 系統控制架構 15
2.3 系統控制模式與控制方法 16
2.3.1 系統模式 16
2.3.2 血壓量測壓力控制曲線 17
2.4 血壓量測 20
2.5 主動壓力控制 22
第三章 系統實現方法 25
3.1 主動壓力控制血壓量測平台機構介紹 26
3.2 壓力感測類比訊號處理電路 28
3.2.1 氣壓感測器與直流壓力訊號處理電路 29
3.2.2 交流脈壓波訊號擷取電路 30
3.2.3 壓力訊號擷取電路校正 31
3.3 馬達驅動電路 32
3.4 壓力控制器 33
3.5 使用者介面開發 34
3.5.1 Android嵌入式系統平台 35
3.5.2 Android血壓計程式 37
3.5.3 PC端演算法模擬驗證介面開發 39
3.5.4 遠距監控介面開發 40
第四章 實驗結果分析討論 42
4.1 主動壓力控制實驗 42
4.2 壓力曲線控制驗證實驗 44
4.3 血壓量測實驗 45
4.4 與市售血壓計之比較結果 49
4.5 遠距監控介面 52
第五章 結論與未來研究 55
5.1 結論 55
5.2 未來研究方向 55
[1]丁蒼毅,「使用低壓量測方法隻連續血壓量測系統」,碩士論文,中央大學,民國96年。
[2]郭建志,「以恆壓低壓量測連續脈壓訊號」,碩士論文,中原大學,民國91年。
[3]范振臺,「可攜式低壓型腕部脈搏訊號之量測」,碩士論文,中原大學,民國90年。
[4]徐大川,「連續血壓量測系統的改良與驗證」,碩士論文,中央大學,民國97年。
[5]王秉偉,「低侵入式動脈血流量與血壓裝置之研製與應用」,碩士論文,義守大學,民國95年。
[6]楊書瑋,「基於血壓計架構隻動脈硬化量測系統」,碩士論文,聖約翰科技大學,民國99年。
[7]W. Van Moer, L. Lauwers, D. Schoors, and K. Barbe, “Linearizing oscillometric blood-pressure measurements: (Non)Sense,” IEEE Transactions on Instrumentation and Measurement, vol. 60, no. 4, pp. 1267 – 1275, 2011.
[8]詹皓羽,「光體基便畫描記圖之心血管功能診斷應用」,碩士論文,中原大學,民國93年。
[9]M. Nitzan, A. Patron, Z. Glik, and A. T Weiss, “Automatic noninvasive measurement of systolic blood pressure using photoplethysmography,” Biomedical Engineering Online, 2009.
[10]J.Y. Lee, E.Y. Choi, H.J. Jeong, K.H. Kim, and J.C. Park, “Blood pressure measurement using finger cuff,” IEEE International Conference on Engineering in Medicine and Biology Society, pp. 3575 – 3577, 2005.
[11]Y. Song, S. Gao, A. Ikarashi, and K.I. Yamakoshi, “A new cuff unit for measuring instantaneous blood pressure at the finger artery by local pressurization,” IEEE International Conference on Bioinformatics and Biomedical Engineering, pp. 1 – 4, 2009.
[12]潘冠廷,「非侵入式波動彈性管內壓力之實現」,碩士論文,逢甲大學,民國97年。
[13]V. Jazbinsek, J. Luznik and Z. Trontelj, “Influence of different representations of the oscillometric index on automatic determination of the systolic and diastolic blood pressures,” European Conference on Medical and Biological Engineering, pp. 216 – 220, 2008.
[14]J.J. Wang, C.T. Lin, S.H. Liu, and Z.C. Wen, “Model-based synthetic fuzzy logic controller for indirect blood pressure measurement,” IEEE Transactions on Systems, Man, and Cybernetics Part B, vol. 32, no. 3, pp. 306 – 315, 2002.
[15]林明達,「腕式血壓計充氣幫浦之性能研究與開發」,碩士論文,大同大學,民國93年。
[16]O. Krejcar, Z. Slanina, J. Stambachr, P. Silber, and R. Frischer, “Noninvasive continuous blood pressure measurement and GPS position monitoring of patients,” IEEE International Conference on Vehicular Technology, pp. 1 – 5, 2009.
[17]G. Lopez, H. Ushida, K. Hidaka, M. Shuzo, J.J. Delaunay, I. Yamada, and Y. Imai, “Continuous blood pressure measurement in daily activities,” IEEE International Conference on Sensors, pp. 827 – 831, 2009.
[18]H.S. Oh, Y.J. Chee, J.S. Lee, I.Y. Kim, S.I. Kim, and Y.S. Kim, “The modified step-wise deflation method in blood pressure measurement,” IEEE International Conference on Computers in Cardiology, pp. 169 – 172, pp. 2008.
[19]D. Adam, E. Burla, “Blood pressure estimation by processing of echocardiography signals,” IEEE International Conference on Computers in Cardiology, pp. 609 – 612, 2001.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top