|
[1] Schlichting, H., Boundary Layer Theory, McGraw-Hill, New York, 1979. [2] Batchelor, G. K., “Note on a class of solutions of the Navior-Stokes equations representing steady rotationally-symmetric flow,” Quart. J. Mech., Vol. 4, 1951, pp. 29-41. [3] Greenspan, H., The Theory of Rotating Fluids, Cambridge University Press, Cambridge, 1969. [4] Owen, J. M., Rogers, R., Flow and Heat Transfer in Rotating Disk Systems, Vol. 1: Rotor-Stator Systems, John Wily & Sons, New York, 1989. [5] Childs, P. R. N., Rotating Flow, Butterworth-Heinemann, Burlington, USA, 2011. [6] Crespo del Arco, E., Serre, E., Bontoux, P., Launder, B. E., “Stability, transition and turbulence in rotating cavities,” in Instability of Flows, Rahman M. (Ed.), WIT Press, Milton Keynes, UK, 2005. [7] Akhmetov, D. G., Tarasov, V. F., “Structure and evolution of vortex cores,” J. Applied Mech. Tech. Physics, Vol. 27, No. 5, 1986, pp. 690-694. [8] Lennemann, E., “Aerodynamics aspects of disk files,” IBM J. Res. Develope, Vol. 18, No. 6, 1974, pp. 480-488. [9] Kaneko, R., Oguchi, S., Hoshiya, K., “Hydrodynamic characteristics in disk packs for magnetic storage,” Rev. Elect. Comm. Lab., Vol. 25, No. 11-12, 1977, pp. 1325-1336. [10] Abrahamson, S. D., Eaton, J. K., Koga, D. J., “The flow between shrouded corotating disks,” Phys. Fluids, Vol. 1, No. 2, 1989, pp. 241-251. [11] Schuler, C. A., Weber, U. B., Humphrey, J. A. C., Greif, R., “On the flow in the unobstructed space between shrouded corotating disks,” Phys. Fluids, Vol. 2, No. 10, 1990, pp. 1766-1770. [12] Tzeng, H.-M., Munce, A. C., Crawforth, L., “Quantitative airflow visualization between shrouded corotating disks,” in Experimental and Numerical Flow Visualization, Khalighi B. (Ed.), Vol. 128, 1991, pp. 141-147. [13] Funaki, J., Takizawa, K., Hirata, K., Yano, H., “Flow modes in gap between coaxial rotating disks,” Trans. Jpn. Soc. Mech. Eng. : Ser. B, Vol. 81, No. 588, 1995, pp. 2924-2929. (In Japanese) [14] Herrero, J., Giralt, F., Humphery, J. A. C., “Influence of the geometry on the structure of the flow between a pair of corotating disks,” Phys. Fluids, Vol. 11, No. 1, 1999, pp. 88-94. [15] Wu, S. C., Chen, Y. M., “Phase-averaged method applied to periodic flow between shrouded corotating disks,” Int. J. Rotating Mach., Vol. 9, No. 4, 2003, pp. 293-301. [16] Tsai, Y. S., Chang, Y. M., Chang, Y. J., Chen, Y. M., “Phase-resolved PIV measurements of the flow between a pair of corotating disks in a cylindrical enclosure,” J. Fluids Structures, Vol. 23, No. 1, 2007, pp. 191-206. [17] Picha, K. G., Eckert, E. R. G., “Study of the air flow between coaxial disks rotating with arbitrary velocities in an open or enclosed space,” in Proc. 3rd U. S. Nat. Congress of Applied Mechanics, ASME, New York, 1958, pp. 791-798. [18] Flagan, R. C., Seinfeld, J. H., Fundamentals of Air Pollution Engineering, Prentice-Hall, New Jersey, 1988, pp. 290-357. [19] Raffel, M., Willert, C., Kompehans, J., Particle Image Velocimetry: A Practicle Guide, Springer, Berlin Heidelberg, Germany, 1998. [20] Adrain, R. J., “Particle-imaging techniques for experimential fluid mechanics,” Annu. Rev. Fluid Mech., Vol. 23, 1991, pp. 261-304. [21] Adrian, R. J., “Twenty years of particle image velocimetry,” Exp. Fluids, Vol. 39, 2005, pp. 159-169. [22] Grant, I. (Ed.), Selected Papers on Particle Image Velocimetry, The Society for Optical Engineering (SPIE), Washington, USA, 1994. [23] Tsai, Y. S., On the Flow between A Pair of Corotating Disks in A Cylindrical Enclosure, PhD Thesis, National Taiwan University, 2006. (In Chinese) [24] Perry, A. E., Lim, T. T., Chong, M. S., “The instantaneous velocity fields of coherent structures in co-flowing jets and wakes,” J. Fluids Mech., Vol. 101, 1989, pp. 243-256. [25] Palmer, A. C., Dimensional Analysis and Intelligent Experimentation, World Scientific, Singapore, 2008. [26] 談慶明,量綱分析,中國科學技術大學出版社,合肥,2005. [27] Buckingham, E., “On physically similar systems: illustrations of the use of dimensional equations,” Phys. Rev., Vol. 4, 1914, pp. 345-376. [28] Welsh, W. E., Hartenett, J. P., “Velocity measurements in the boundary layer and in the main flow between two coaxial disks rotating with equal velocities in air,” in Proc. 3rd U. S. Nat. Congress of Applied Mechanics, ASME, New York, 1958, pp. 847-855. [29] Shirai, K., Yaguchi, Y., Buttner, L., Czarske, J., Obi, S., “Highly spatially resolving laser Doppler velocity measurements of the tip clearance flow inside a hard disk driver model,” Exp. Fluids, Vol. 50, 2011, pp. 573-586. [30] Hirata, K., Furue, M., Sugawara, N., Funaki, J., “An experimental study of three-dimensional vortical structures between co-rotating disks,” J. Phys.: Conference Series, Vol. 14, 2005, pp. 213-219. [31] Miura, T., Mizushima, J., “Stability of flow between two corotating disks in an enclosure,” Phys. Fluids, Vol. 19, 2007, pp. 068106-1 ~ 14. [32] Mizushima, J., Sugihara, G., Miura, T., “Two modes of oscillatory instability in the flow between a pair of corotating disks,” Phys. Fluids, Vol. 21, 2009, pp. 014101-14. [33] Humphrey, J. A. C., Chang, C. J., Li, H. W., Schuler, C. A., “Unobstructed and obstructed rotating disk flows: A summary review relevant to information storage systems,” Advances in Information Storage Systems, ASME, Vol. 1, 1991, pp. 79-110. [34] Wu, S. J., The Flow between Corotating Disks with/without An Obstruction in A Cylindrical Enclosure, PhD Thesis, National Taiwan University, 2000. (In Chinese) [35] Batchelor, G. K., An Introduction to Fluid Dynamics, Cambridge University Press, Cambridge, 1967. [36] Rabaud, M., Couder, Y., “A Shear-flow instability in a circular geometry,” J. Fluid Mech., Vol. 136, 1983, pp.291-319. [37] Cooley, J. W., Tukey, J. W., “An algorithm for the machine compution of complex Fourier Series,” Math. Comput., Vol. 19, 1965, pp. 277-301. [38] Tzeng, H. M., Humphrey, J. A. C., “Corotating disk flow in an axisymmetric enclosure with and without a bluff body,” Int. J. Heat and Fluid Flow, Vol. 12, No. 3, 1991, pp. 194-201. [39] Amemiya, K., Masuda, S., Obi, S., Tokuyama, M., Imai, S., “Flow between shrouded corotating disks,” Trans. Jpn. Soc. Mech. Eng. Ser. B, Vol. 66, No. 650, 2000, pp. 2559-2564. (In Japanese) [40] Kong, D. W., Joo, W. G., Doh, D. H., “Visualization of the transitional flow patterns at the mid-span between shrouded co-rotating disks,” J. Visualization, Vol. 10, No. 4, 2007, pp. 381-388. [41] Wu, S.-C., “A PIV study of co-rotating disks flow in a fixed cylindrical enclosure,” Exp. Thermal Fluid Sci., Vol. 33, No. 5, 2009, pp. 875-882. [42] Gor, D., Humphrey, J. A. C., “Ventilated flow in the unobstructed space between corotating disks in a cylindrical enclosure,” Trans. ASME, J. Fluids eng., Vol. 115, Sep., 1993, pp. 398-407. [43] Hide, R., Titman, C. W., “Detached shear layer in a rotating fluid,” J. Fluid Mech., Vol. 29, Part 1, 1967, pp. 39-60. [44] Lighthill, M. J., “Attachment and separation in three-dimensional flow”, in Laminar Boundary Layers, Rosenhead L. (Ed.), Oxford University Press, Cambridge, 1963, pp. 72-82. [45] Perry, A. E., Fairlie, B. D., “Critical points in flow patterns,” Adv. Geophys., Vol. 18, Part B, 1974, pp. 299-315. [46] Hunt, J. C. R., Abell, C. J., Peterka, J. A., Woo, H., “Kinematical studies of the flows around free or surface-mounted obstacles; applying topology to flow visualization,” J. Fluid Mech., Vol. 86, No. 1, 1978, pp. 299-446. [47] Tobak, M., Peake, D. J., “Topology of two-dimensional and three dimensional separation flows,” AIAA-79-1480, 1979. [48] Tobak, M., Peake, D. J., “Topology of three-dimensional separated flows,” NASA-TM-81294, 1981. [49] Chong, M. S., Perry, A. E., Cantwell, B. J., “A general classification of three-dimensional flow fields,” Phys. Fluids A, Vol. 2, No. 5, 1990, pp. 765-777. [50] Hesselink, L., Helman, J., Ning, P., “Quantitative image processing in fluid mechanics,” Exp. Thermal Fluids Sci., Vol. 5, 1992, pp. 605-616. [51] Coutanceau, M., Pineau, G., “Some typical mechanisms in the early phase of the vortex-shedding process from particle-streak visualization,” Atlas of visualization III, CRC press, 1997, pp. 43-68. [52] Randriamampianina, A., Schiestel, R., Wilson, M., “The turbulent flow in an enclosed corotating disk pair: axisymmetric numerical simulation and Reynolds stress modeling,” Int. J. Heat and Fluid Flow, Vol. 25, 2004, pp. 897-914. [53] Tennekes, H., Lumley J. L., A First Course in Turbulence, MIT Press, Cambridge, 1983. [54] Pope, S. B., Turbulent Flows, Cambridge University Press, Cambridge, 2000. [55] Evans, R. L., “Some turbulence and unsteadiness effects in turbomachinery”, in Turbulence in Internal Flow, Murphy S. N. B. (Ed.), Hemisphere Publishing, Washington D. C., 1977. [56] Reynolds, W. C., Hussain, A. K. M. F., “The mechanics of an organized wave in turbulent shear flow. Part 3. Theoretical models and comparisons with experiments,” J. Fluid Mech., Vol. 54, Part 2, 1972, pp. 263-288. [57] Kundu, P. K., Cohen, I. M., Dowling, D. R., Fluid Mechanics, Academic Press, Waltham, USA, 2012. [58] 章梓雄、董曾南,黏性流體力學,清華大學出版社,北京,1998。 [59] Sheng, J., Meng, H., Fox, R. O., “A large eddy PIV method for turbulence dissipation rate estimation,” Chem. Eng. Sci., Vol. 55, 2000, pp. 4453-4434. [60] Liu, X. H., Min, J., Pan, C. M., Gao, Z. M., Chen, W. M., “Investigation of turbulence kinetic energy dissipation rate in a stirred tank using large eddy PIV approach,” Chin. J. Process Eng., Vol. 8, No. 3, 2008, pp. 425-431. [61] Elsner, J. W., Elsner, W., “On the measurement of turbulence energy dissipation,” Meas. Sci. Technol., Vol. 7, 1996, pp. 1334-1348. [62] Taylor, G. I., “The spectrum of turbulence,” Proc. R. Soc. Lond. A, Vol. 164, 1938, pp. 476-490. [63] Pinsky, M., Khain, K., Tsinober, A., “Accelerations in isotropic and homogeneous turbulence and Taylor’s hypothesis,” Phys. Fluids, Vol. 12, No. 12, 2000, pp. 3195-3204.
|