(3.238.249.17) 您好!臺灣時間:2021/04/13 19:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:羅伊婷
研究生(外文):Yin-ting Lo
論文名稱:六自由度並聯式機器人可連續運動工作空間之研究
論文名稱(外文):A STUDY ON THE COMPATIBLE WORKSPACE OF 6-DOF PARALLEL MANIPULATORS
指導教授:蔡高岳
指導教授(外文):Kao-yueh Tsai
口試委員:蔡高岳
口試日期:2012-06-08
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:80
中文關鍵詞:六自由度並聯式機器人對稱型工作空間
外文關鍵詞:6-DOF parallel manipulatorsSymmetricWorkspace
相關次數:
  • 被引用被引用:3
  • 點閱點閱:153
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
決定六自由度並聯式機器人之工作空間被認為是機器人學術研究上最難解決的問題之一,而且所得到之結果可能為一理論上之工作空間,此空間內之部分區域可能在必須拆解機器人之後才能到達,因此並非可藉由連續運動到達之點之集合。一可連續運動工作空間之邊界曲面由數十個區塊組合而成,理論上需要從數百種可能之方程式組合中搜尋出每一區塊之正確組合才能夠求得工作空間之邊界曲面。目前唯一能求得可連續運動空間之方法完全以數學運算為基礎,其過程需要不斷的應用座標變換並使用賈氏矩陣搜尋方程式組合,此過程不但非常複雜而且費時。本論文依據曲面交集或聯集之基本性質以及對稱型機器人工作空間邊界曲面之特性提出一完全不需要座標變換以及使用賈氏矩陣之方法,此新方法僅需要執行一次二選一之搜尋即可決定所有產生工作空間邊界之方程式。決定所有區塊之方程式之後,理論上必須使用反位移分析法判斷何時需要轉換方程式以求得邊界曲面上之其他區塊,本文利用邊界曲面之特性提出可直接判斷何時需轉換方程式,因此完全不需使用到反位移分析即可得到工作空間之邊界曲面。
  Determining the reachable workspace of a 6-DOF parallel manipulator is an extremely complicated task, and the workspace obtained might be a theoretical workspace with some of its subspaces cannot be reached through a continuous motion starting from the initial assembly configuration. The boundary of a compatible workspace (or continuous motion workspace) consists of many patches, and there are hundreds of possible sets of four constraint equations that can generate a patch. The existing method uses coordinate transformations and the Jacobian matrix to search for the equations for each patch. This work shows that once the correct set of equation for a segment on the workspace boundary is determined from two possible sets of equations, the equations to develop the whole workspace boundary can be predicted using simple geometric properties and some special characteristics of the workspace. No coordinate transformation or the Jacobian matrix is needed in this approach. The inverse kinematics is commonly used to detect where to change the equations for a different patch. This work presents an approximation method to predict the position to change the equations, so the workspace boundary can be developed without using the inverse kinematics.
中文摘要 I
Abstract II
誌謝 III
目錄 IV
圖表索引 VI
第一章 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 4
1.3 論文架構 6
第二章 理論基礎 7
2.1 6-DOF 對稱型並聯式機器人 7
2.2 位移分析 9
2.3 賈氏矩陣 11
2.4 驅動軸位移限制之拘束方程式 15
2.5 極座標邊界繪製法 16
2.6 工作空間之體積 17
第三章 工作空間剖面之邊界曲線 20
3.1 座標變換邊界繪製法 20
3.2 工作空間邊界曲面之特性 22
3.3 最大可能釋放鏈 28
3.4 MLR鏈邊界繪製法 30
3.5 小結 32
第四章 工作空間之邊界曲面 33
4.1 工作空間邊界曲面 33
4.2一般機器人邊界曲面之特徵 37
4.3繪製原則與方法 43
4.4近似邊界曲面繪製法 47
4.5小結 49
第五章 數值範例 50
5.1 範例一 50
5.2 範例二 60
5.3 小結 64
第六章 結論與未來展望 65
參考文獻 67
作者簡介 69
[1]J. P. Merlet, ”Determination of 6D workspaces of Gough-type parallel manipulator and comparison between different geometries,”International Journal of Robotics Research, Vol. 18, No. 9, pp. 902-916(1999)
[2]F Pernkopf and M L Husty,”Workspace analysis of Stewart–Gough-type parallel manipulators,”Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 220, No. 7, pp. 1019-1032(2006)
[3]Jing-Shan Zhao, Fulei Chu and Zhi-Jing Feng,”Symmetrical characteristics of the workspace for spatial parallel mechanisms with symmetric structure,”Mechanism and Machine Theory, Vol. 43, No. 4, pp. 427-444 (2008)
[4]C. M. Luh, Adkins, F. A., E. J. Haug, and C. C. Qiu,”Working Capability Analysis of Stewart Platforms,”Journal of Mechanical Design, Transactions of the ASME, Vol. 118, No. 2, pp. 221-227 (1996)
[5]I. A. Bonev and J. Ryu, ”A new approach to orientation workspace analysis of 6-DOF parallel manipulators,” Mechanism and Machine Theory, Vol. 36, No. 1, pp. 15-28(2001)
[6]K. Y. Tsai.,T. K. Lee, and K. D. Huang,”Determining the workspace boundary of 6-DOF parallel manipulators,”Robotica, Vol. 24, No. 5, pp.605-611 (2006)
[7]C. Gosselin, ”Determination of the workspace of 6-DOF parallel manipulators,” Journal of mechanisms, transmissions, and automation in design, Vol. 112, No. 3, pp. 331-336(1990)
[8]O. Masory, J. Wang, ”Workspace evaluation of Stewart platform,” Advanced Robotics, Vol. 9, No. 4, pp. 443-461(1995)
[9]M. Z. A. Majid, Z. Huang, Y. L. Yao, ”Workspace analysis of a six-degrees of freedom, three-prismatic-prismatic-spheric-revolute parallel manipulator,” International Journal of Advanced Manufacturing Technology, Vol. 16, No. 6, pp. 441-449(2000)
[10]H. Li and H., C. M. Gosselin, et al. (2007) , “Determination of the maximal singularity-free zones in the six-dimensional workspace of the general Gough-Stewart platform,” Mechanism and Machine Theory, Vol. 42, No. 4, pp. 497-511(2007)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔