(3.215.183.251) 您好!臺灣時間:2021/04/23 12:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:孫銘宏
研究生(外文):Ming-hung Sun
論文名稱:燃料丸與護套機械作用-氫化鋯效應
論文名稱(外文):The Hydride Effect on Pellet-Cladding Mechanical Interaction
指導教授:趙振綱
指導教授(外文):Ching-kong Chao
口試委員:趙振綱
口試日期:2012-06-12
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:78
中文關鍵詞:沸水式反應器壓水式反應器非典型燃料丸與護套作用氫化鋯溫度梯度氫濃度分佈
外文關鍵詞:boiling water reactorpressurized water reactornon-classical pellet cladding interactionhydridetemperature gradienthydrogen concentration distribution
相關次數:
  • 被引用被引用:0
  • 點閱點閱:95
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
燃料丸端面製造缺陷是2000年中期前後,造成沸水式反應器(Boiling Water Reactor, BWR)燃料破損的重要機制之一,稱為非典型燃料丸與護套作用(non-classical Pellet Cladding Interaction, PCI),而除了BWR燃料,壓水式反應器(Pressurized Water Reactor, PWR)電廠也發生少量類似的破損機制。燃料丸不規則端面除了造成較高之應力集中,破損案例肇因分析顯示,氫化鋯也扮演著關鍵角色。此外日本對高燃耗燃料行為的相關研究中,也發現在進行功率躍升實驗時,氫化鋯於護套外側集中,形成初始裂縫,並往內部成長,而成為另一種不預期的破損機制。護套中的氫原子隨溫度梯度往低溫區域擴散,並隨著環境變化析出成為氫化物,由於與鋯合金母材機械效應的差異,往往成為核燃料破損的起始點或是加劇的主因。
本研究探討燃料丸外緣因製造缺陷造成燃料棒與護套發生局部相對低溫現象,進而造成氫於護套部分區域之擴散與氫化物集中效應。研究過程先依據可預期之燃料丸製造缺陷,分析局部溫度差異,參考已建立之溫度梯度模型與氫濃度分佈模型取得氫化物局部差異性,接著導入有限元素法以及破壞力學理論建立分析模式。並分析由高燃耗燃料所造成之LENS型態氫化物析出,建立護套由外往內成長之裂縫模式將與先前由內往外成長的裂縫模式將有所不同,並在裂縫形成後評估其穩定性建立初步之裂化機制。
燃料丸缺陷與分析氫化鋯生成與外側裂縫研究成果對近年來所發現之燃料丸製造缺陷以及裂縫由護套外側往內部成長之破損機制將有所貢獻,可以協助提升核燃料之運轉績效。
The pellet fabrication defect “Missing Pellet Surface (MPS)” became an important failure mechanism of BWR fuel in the past decade, and the unexpected high stress induced on cladding inner surface was identified as “non-classical PCI”. Similar failures were found for few PWR rods at the same time. The failure root cause analysis of some leaking rods indicated that hydrides may play an important role of the outside-in cracking. The study of high burnup fuel behavior performed by Japanese also revealed the cladding outside-in crack during power ramp test and may become another issue of high burnup fuel integrity. The cladding temperature gradient will induce the hydrogen re-distribution, and the precipitated hydride could initiate cladding crack and rod failure.
Our study is to investigate the cladding local temperature distribution with the MPS, then to identify the local cold spot area with higher hydrogen content and possible more hydride. The approach of pellet defect is based on the fabrication experience. A finite element model of cladding with non-homogeneous hydride distribution was applied in the analyses of the formation of outside-in crack and its stability. We analysis the high burnup fuel caused by the LENS types of hydride precipitation, the establishment of cladding the outside-in crack pattern will vary with the previous inside-out crack pattern. After the crack formation, We assess its stability and establish preliminary cracking mechanism..
The established model is helpful to understand the hydride effect of Pellet-Cladding Mechanical Interaction (PCMI), either for the fabrication concern or high burnup fuel reliability.
中文摘要 I
ABSTRACT II
誌謝 III
目錄 IV
圖表索引 VI
第1章 緒論 1
1.1 研究背景、動機與目的 1
1.2 文獻回顧 4
1.3 本文架構 7
第2章 理論基礎 10
2.1 應力強度因子 10
第3章 有限元素分析 16
3.1 端面缺角造成氫化鋯析出現象 16
3.2 介紹有限元素法 17
3.3 六種不同缺陷型態燃料丸造成護套內外部溫度梯度 18
3.3.1 製造缺陷 19
3.3.2 溫度分佈與差異 19
3.3.3 氫化物析出差異 19
3.4 氫化鋯環向排列對護套裂縫影響 20
3.5 氫化鋯LENS型態對護套裂縫影響 21
3.5.1 LENS前端有無析出徑向氫化物對護套裂縫影響 22
3.5.2 不同LENS厚度模型對護套裂縫影響 22
3.5.3 LENS前端析出徑向氫化物面積對護套裂縫影響 23
3.5.4 LENS前端析出徑向氫化物緊密度對護套裂縫影響 23
3.6 有限元素分析 23
3.6.1 元素選擇與裂縫網格有限元素法 23
3.6.2 材料性質 24
3.6.3 邊界條件 25
3.6.4 求解與後處理 25
3.6.5 收斂性分析 25
第4章 結果與討論 44
4.1 有限元素分析結果 44
4.2 熱溫度分佈結果探討 44
4.3 收斂性結果探討 45
4.4 氫化鋯環向排列結果探討 49
4.5 氫化鋯型態LENS結果探討 49
4.5.1 裂縫長度大於LENS厚度 50
4.5.2 裂縫長度等於LENS厚度 51
4.5.3 裂縫長度小於LENS厚度 52
4.5.4 裂縫處於外部、邊界、內部之綜合比較 53
第5章 結論與建議 72
5.1 結論 72
5.2 未來展望 75
參考文獻 76
作者簡介 78


[1]B.Cox,“Pellet-Clad Interaction(PCI) Failures of zirconium alloy Fuel cladding A review,”J.Nucl.Mater., Vol.172,pp249-292,1990.
[2]C. Powers, et al.,“Hot Cell Examinations Results of Non-Classical PCI Failures”at Ls Salle, Proceedings of the Water Reactor Fuel Performance Meeting, October 2~6, Kyoto, Japan. 2005.
[3]Y. Aleshin, C. Beard, G. Mangham D. Mitchell, E. Malek, and M. Young“The Effect of Pellet and Local Power Variations on PCI Margin”Proceedings of Top Fuel 2010, Orlando, Florida, USA, September 26-29, Paper 041, 2010.
[4]H.Maki and M. Sato,“Thermal Diffusion of Hydrogen in Zircaloy-2 Containing Hydrogen beyond Terminal Solid Solubility,” Journal of Nuclear Science and Technology 12(10), p.637-649, 1975.
[5]M.Kuroda, K.Yoshioka, S.Yamanaka, H.Anada,F.Nagase and H.Uetsuka, “Influence of Precipitated Hydride on the Fracture Behavior of Zircaloy Fuel Cladding Tube” Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol. 37, No. 8, p.670–675, 2000.
[6]J.S. Lee, J.S. Yoo, H.K. Kim, D. Mitchell, and Y. Aleshin,“The Mechanical Behavior of Pellet-Cladding with the Missing Chip under PCMI Loadings during Power Ramp”Proceedings of the 2007 International LWR Fuel Performance Meeting San Francisco, California, September 30 – October 3, Paper 1022, 2007.
[7]H.Hayashi, K.Ogata, T. Baba and K.Kamimura,“Research Program to Elucidate Outside-in Failure of High Burnup Fuel Cladding”Journal of Nuclear Science and Technology, Vol. 43, No. 9, p.1128–1135, 2006.
[8]C.K. Chao and Che-Chung Tseng,“Pellet Crack Mechanism at Power Ramps,”J.Nucl.Mater. vol.199,p.159-166, 1993.
[9]莊東漢,材料破損分析,五南圖書出版股份有限公司,台北,第244-248頁
[10]科學網ANSYS中應力強度因子與J積分的計算http://blog.sciencenet.cn/home.php?mod=space&uid=303803&do=blog&id=403707&fb_source=message
[11]康鳳梅 許榮添 詹世良,循序學習SolidWorks2005,全華圖書出版股份有限公司,台北
[12]陳信吉,ansys入門,全華圖書出版股份有限公司,台北
[13]洪佑宗,“用過核燃料護套延遲氫化龜裂劣化機制研究,”台灣科技大學機械工程學系碩士論文,2003
[14]陳錦坤,“用過核燃料護套中期儲存潛變劣化機制分析,”台灣科技大學機械工程學系碩士論文,2006
[15]黃憲章,“用過核燃料護套封箱期間熱應力作用之劣化分析,”台灣科技大學機械工程學系碩士論文,2006
[16]K.Sakamoto, M.Nakatsuka, and T.Higuchi,“Simulation of Outside-in Cracking in Boiling Water ReactorFuel Cladding Tubes under Power Ramp”Journal of ASTM International, Vol. 7, No. 6 Paper ID JAI102938, 2011.
[17]Dr. A.-V. Phan, University of South Alabama ANSYS TUTORIAL 2-D Fracture Analysis ANSYS Release 7.0
[18]K.Ogata, T.Baba, K.Kamimura, T.Higuchi, K.Sakamoto,Y. Etoh and K.Ito, “Hydrogen Thermal Diffusion and Crack Propagation Behaviorsin Irradiated Zircaloy-2 Cladding Tubes”Proceedings of 2010 LWR FuelPerformance/TopFuel/WRFPM Orlando, Florida, USA, September 26-29, Paper 0067, 2010.
[19]基於ansys斷裂參數的計算http://www.autooo.net/utf8-classid78-id79170.html
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔