跳到主要內容

臺灣博碩士論文加值系統

(44.192.94.177) 您好!臺灣時間:2024/07/16 23:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:廖浚祺
研究生(外文):Chun-chi Liao
論文名稱:軌道車輛運動導致鋼軌撓曲響應之模擬分析與探討
論文名稱(外文):A simulation study on the dynamic response of track deflection produced by running vehicle
指導教授:吳翼貽
指導教授(外文):Ye-Ee Wu
口試委員:吳翼貽
口試日期:2012-07-17
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:91
中文關鍵詞:模擬分析鋼軌撓曲響應
外文關鍵詞:simulationtrack deflection
相關次數:
  • 被引用被引用:0
  • 點閱點閱:278
  • 評分評分:
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:0
本研究係應用前人已建立之車輛/軌道耦合數學模型[10]為基礎,採用台灣鐵路管理局之車輛及鋼軌等特性參數進行數值分析模擬,並將模擬所得之結果與CECI軌道技術中心[29]所得之實際量測應變數據比對,來確認此模擬程式之適用性及可行性。再以此分析模型模擬台鐵局不同型號車輛作用於具不整度之直線鋼軌,探討運轉車輛對鋼軌垂向及側向撓曲之影響。最後模擬運轉車輛作用於具不同磨耗鋼軌,探討鋼軌磨耗量對鋼軌撓曲值之影響。
本研究之數值模擬結果顯示,在平直軌道上以數值模擬分析所得鋼軌縱向應變值與CECI所得實際量測鋼軌縱向應變值相近,雖在應變值上約有20%以內之差異,但其動態響應具有相同之趨勢,惟數值分析所得為平滑曲線而實際量測所得為鋸齒狀曲線,顯示本研究之數值模擬分析模型具有一定之適用性及可行性。鋼軌不整度對數值模擬所得之鋼軌垂向及側向撓曲動態響應均會有影響,使得鋼軌動態響應曲線產生鋸齒狀曲線,近似於CECI所得之實際量測圖形,顯示本研究之數值模擬分析對於鋼軌不整度波形具有高度敏感性。
數值模擬結果亦顯示,影響鋼軌撓曲動態響應最大因素為車輛之軸重,而實際量測應變值介於以最小軸重(空車重)與最大軸重所得之數值模擬分析值之間;實際量測應變值與以空車重所得之數值分析值相近,誤差約5%以內。鋼軌頭部均勻磨耗量愈大,車輛作用於鋼軌之鋼軌垂向撓曲值愈大,並在最大均勻磨耗量14mm時,產生最大鋼軌垂向撓曲值為0.1432mm。
The objective of this study is to investigate the dynamic response of track deflection caused by running vehicle using an established simulation model. In this study the actual parameters of vehicle (EMC car of EMU500 of TRA at the highest loading condition) and track system (UIC 60 rail) were adopted to conduct the simulation analyses. At first, simulation results obtained from straight even rails were compared with the on-site strain measured in the longitudinal direction of the rail obtained by CECI to validate the applicability and the suitability of this simulation model. Then the effects of axial loading, track irregularity and wear rails on the dynamic response of track deflection were studied.
The simulated dynamic response of the stain in the longitudinal direction of the rail obtained from straight even rails show the same trend as that measured by CECI except the shape and the maximum amplitude values (about 20% difference). The simulation curve is a smooth curve, but the measured curve is a serrated one; further simulation analyses using rails with irregularity reveal that this serrated behavior is related to the irregularity of the track. This result implies that the simulation model applied in this study is very sensitive to rail irregularity.
Simulation analyses also show that the axial loading has strong influence on the maximum amplitude value. The actually measured maximum strain value is higher than the maximum strain value obtained from the simulation analyses using S1(empty vehicle) loading condition, the difference is about 5%.
Simulation results also indicate that the wear of rail head will increase the vertical track deflection; in the most severe allowable condition (with even wear of 14 mm) the vertical track deflection can reach 0.14mm.
摘要 I
Abstract II
誌謝 III
目錄 IV
圖索引 VI
表索引 VIII
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
第二章 文獻回顧 4
第三章 車輛/軌道系統之分析方法 10
3.1 數值模擬之分析方法 10
3.1.1 有限元素法公式化 17
3.1.2 樑元素之M、C、K、F矩陣 21
3.1.3 紐馬克(Newmark-β)數值積分法 24
3.1.4 輪/軌接觸力 27
3.2 鋼軌應變計算原理 32
第四章 數值分析結果與討論 35
4.1 數值分析結果與實際量測值比較 36
4.2 車輛作用於具不整度直線鋼軌之鋼軌撓曲響應 39
4.2.1 載客量對鋼軌縱向應變值之影響 43
4.2.2 不同型號車輛對鋼軌垂向及側向撓曲之影響 47
4.3 EMU500型車輛作用於具磨耗鋼軌之鋼軌撓曲 53
第五章 結論與展望 57
5.1 結論 57
5.2 未來展望 58
參考文獻 59
附錄 62
附錄A 車輛/軌道系統數值模擬之運動方程式 62
A.1 車輛模擬系統之運動方程式 62
A.1.1 車廂之運動方程式 65
A.1.2 轉向架之運動方程式 67
A.1.3 輪軸組之運動方程式 72
A.2 軌道模擬系統之運動方程式 76
附錄B 車輛/軌道系統數值模擬參數 80
作者簡介 91
[1]J. C. O. Nielsen and A. Igeland, 1995, “Vertical Dynamic Interaction Between Train and Track-Influence of Wheel and Track Imperfections,” Journal of Sound and Vibration, Vol. 187, No. 5, pp. 825-839.
[2]T. Dahberg, 1995, “Vertical Dynamic Train/Track Interaction Verifying a Theoretical Model by Full-Scale Experiments,” Vehicle System Dynamics, Vol. 24, Suppl., pp. 44-57.
[3]W. M. Zhai, C. B. Cai and S. Z. Gu, 1996, “Coupling Model of Vertical and Lateral Vehicle/Track Interactions,” Vehicle System Dynamics, Vol. 26, pp. 61-79.
[4]A. Matsumoto, Y. Sato, M. Tanimoto and K. Qi, “Study on the Formation Mechanism of Rail Corrugation on Curved Track,” Supplement to Vehicle System Dynamics, Vol. 25, pp. 450-465, 1996.
[5]J. J. Kalker, 1996, “Discretely Supported Rails Subjected to Transient Loads,” Vehicle System Dynamics, Vol. 25, pp. 71-88.
[6]W. Zhai and Z. Cai, “Dynamic Interaction Between a Lumped Mass Vehicle and a Discretely Supported Continuous Rail Track,” Computers and Structures, Vol. 63, No. 5, pp. 987-997, 1997.
[7]Xuesong Jin, “ Effects of structure elastic deformations of wheelset andtrack on creep forces of wheel/rail in rolling contact”, Wear 253, pp.247–256,2002.
[8]T. H. Young and C.Y. Li,“Vertical Vibration Analysis of Vehicle/ Imperfect Track Systems,” Vehicle System Dynamics, Vol. 40, No. 5, pp. 329-349, 2003.
[9]曾右辰,“在彎道上的輪/軌系統動態研究”,國立台灣科技大學機械工程學系碩士論文,2005。
[10]張繼靖,“具非線性組尼次懸吊系統之車輛行駛於不整軌道上動態分析”,國立台灣科技大學機械工程學系碩士論文,2005。
[11]Xuesong Jin, “Effect of passenger car curving on rail corrugation at a curved track”, Wear 260, pp.619–633,2006.
[12]李文峰,“高速列車輪/軌互制行為之動態分析及驗證”,國立台灣科技大學機械工程學系碩士論文,2007。
[13]Xuesong Jin, “Effect of sleeper pitch on rail corrugation at a tangent track in vehicle hunting”, Wear 265,1163-1175,2008.
[14]劉家良,“軌道車輛動態響應之分析及驗證”,國立台灣科技大學機械工程學系碩士論文,2009。
[15]錢明鴻,“軌道車輛噪音振動關聯性之模擬分析”,國立台灣科技大學機械工程學系碩士論文,2010。
[16]方柏翔,“高速列車應用半主動式Skyhook阻尼系統車輛之動態分析”,國立台灣科技大學機械工程學系碩士論文,2011。
[17]Wenjie Shao, “ Design and Dynamic Response Analysis of Rail with Constrained Damped Dynamic Vibration Absorber”, Procedia Engineering 15,pp.4983–4987,2011.
[18]E.G. Vadillo and N. Correa, “A rational fraction polynomials model to study vertical dynamic wheel–rail interaction”, Journal of Sound and Vibration 331,pp. 1844–1858,2012.
[19]T. H. Young and C. Y. Li, “Vertical Vibration Analysis of Vehicle/Imperfect Track Systems,” Vehicle System Dynamics, Vol. 40, No. 5, pp. 329-349, 2003.
[20]S. Grassie, “Benchmark Test for Models of Railway Track and of Vehicle/Track Interaction at Relatively Hight Frequencies”, Vehicle System Dynamics, Vol. 24, suppl., pp. 355-362, 1995.
[21]K. L. Knothe, “Benchmark Test for Models of Railway Track and of Vehicle/Track Interaction in the Low Frequency Range”, Vehicle System Dynamics, Vol. 24, suppl., pp. 363-379, 1995.
[22]翟婉明,“車輛-軌道耦合動力學”,科學出版社,2007。
[23]Y. He and J. Mcphee, “Optimization of the Lateral Stability of Rail Vehicles”, Vehicle System Dynamics, Vol. 38, pp. 361-390, 2002.
[24]J. N. Reddy, An Introduction to The Finite Element Method, McGraw-Hill, Inc., Singapore, p. 255, 1993.
[25]Newmark, N. M., ”A Method of Computer for Structural Dynamics,” Journal of Engineering Mechanics Division, ASCE, Vol. 85, pp. 67-94, 1959.
[26]J. J. Kalker, Three-Dimensional Elastic Bodies in Rolling Contact, Kluwer Academic Publishers, The Netherlands, 1990.
[27]Rao V. Dukkipati, “VEHICLE DYNAMICS”, Alpha Science, International Ltd., UK, 2000.
[28]Rao, S.S., “Mechanical Vibrations”, Addison Wesley, Second Edition, pp.376-393, 1990.
[29]財團法人中華顧問工程司,“車軌橋互制實驗與數值模擬分析( II )”,2012。
[30]中華民國交通部,“1067公厘軌距軌道橋隧檢查養護規範”,交通技術標準規範鐵路類,1997。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top