(18.206.177.17) 您好!臺灣時間:2021/04/16 23:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭皓元
研究生(外文):JHENG,HAO-YUAN
論文名稱:單晶矽基板奈米流道加工法及實驗研究
論文名稱(外文):A study on Nanochannel fabrication method and experiments for single-crystal silicon substrate
指導教授:林榮慶林榮慶引用關係
指導教授(外文):lin,Zone-Ching
口試委員:林榮慶
口試日期:2012-07-24
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:184
中文關鍵詞:比下壓能原子力顯微鏡單晶矽基板奈米流道
外文關鍵詞:specific down force energy (SDFE)atomic force microscopy (AFM)single-crystal substratenanochannel
相關次數:
  • 被引用被引用:3
  • 點閱點閱:106
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
本文應用原子力顯微鏡(Atomic Force Microscopy ,AFM)加工單晶矽基板之奈米流道凹槽本文創新提出以比下壓能之觀念建立在單晶矽基板加工不同形狀奈米流道之兩種加工方法。本文提出的第一種加工奈米流道凹槽之方法為設定每加工層在固定下壓力下先加工一道次,然後探針無任何偏移的再進行重覆道次加工,如此在不偏移探針之加工後的底部斷面形狀近似一個半圓弧球型,若圓弧越大則底部形狀越平。第二種加工奈米流道凹槽之方法為設定每加工層在固定下壓力下加工一道次,然後將探針向右偏移再加工一道次,再將探針向左往回偏移至前述兩道次中間位置加工為一個偏移循環。再利用逐步逼近定值之比下壓能數值之觀念計算中間道次之深度,如此在兩道次探針加工斷面之形狀及偏移至中間加工斷面形狀間會造成突起高度,若突起高度大於設定之突起高度收斂值(H=0.54nm),則將偏移量增加使其底部突起高度收斂至設定值內。利用第二種加工奈米流道凹槽方法,若要增加奈米流道凹槽之寬度,則為增加偏移循環,如此即可使奈米流道凹槽之凹槽寬度增加。如在AFM機台上加工奈米流道,本文使用第一種加工奈米流道凹槽方法並配合不同形狀奈米流道路徑規劃,加工岀約20nm深度之T型、正交型、Y型及U型奈米流道,第一種加工奈米流道凹槽方法因為沒有偏移探針加工,故加工奈米流道較為快速,且深度較深。第二種加工奈米流道凹槽方法因為探針偏移加工,必須將底部突起收斂至所設定之範圍內,故實驗加工較為第一種慢,且深度有所限制,但若需要用到深度值低寬度值高的特殊奈米流道時,使用第二種奈米流道加工法為較理想的加工方式,如本文所加工岀凸型之奈米流道。由於加工後之奈米流道的邊緣有毛邊突起,本文使用較小之下壓力再逐步增加下壓力在奈米流道邊緣進行切削以減少毛邊突起高度,並使邊緣毛邊突起高度收斂至本文所設定的0.54nm範圍內,最後本文進行以原子力顯微鏡探針加工單晶矽奈米流道凹槽實驗加工,模擬與實驗結果比較驗證兩種加工方法皆為可行的。
The paper applies Atomic Force Microscopy (AFM) to carry out machining of nanochannel groove on single-crystal silicon substrate. The paper innovatively proposes using the concept of specific down force energy (SDFE) to establish two machining methods of nanochannels in different shapes on single-crystal silicon substrate. For the first machining method of nanochannel groove proposed by the paper, machining is set to be carried out for one step first under a fixed down force in each machining level, and then a probe without offset carries out machining for repeated steps. In this way, the shape of the cross-section at the bottom after being machined by the probe without offset is similar to a semi-arc and -spherical shape. If the arc is greater, the bottom shape will be flatter. As to the second machining method of nanochannel groove, machining is set to be carried out for one step under a fixed down force in each machining level. After that, the probe is offset rightwards to carry out machining for one step, and then offset leftwards to move to the middle position between the abovementioned two steps to carry out machining. Completion of these steps is regarded as an offset cycle. Furthermore, using the concept of SDFE numerical value of step-by-step approximation fixed value, the depth of the middle step is calculated. In this way, between the shape of cross-section machined by the probe for two steps and the shape of cross-section machined after the probe has offset towards the middle, a protruding height is created. If the protruding height is greater than the convergence value (H=0.54nm) of the set protruding height, the offset amount would be increased, making the protruding height at its bottom converged to the set value. Using the second machining method of nanochannel groove, if the width of nanochannel groove is to be increased, the offset cycle has to be increased. In this way, the width of nanochannel groove would thus be increased. If machining of nanochannel is carried out on AFM machine, after the paper uses the first machining method of nanochannel groove and makes planning of nanochannel paths in different shapes, then T-shaped, orthogonal-shaped, Y-shaped and U-shaped nanochannels with depth of around 20nm can be machined. In the first machining method of nanochannel groove, since the probe does not have offset during machining, the machining of nanochannel is faster, and the depth is deeper. But in the second machining method of nanochannel groove, since the probe has offset during machining, the protruding part at the bottom has to be converged to be within the set range. Therefore, its experimental machining is slower than the first method, and the depth is also limited. However, if a special nanochannel with low depth value and high width value has to be used, the second machining method of nanochannel groove is a more ideal machining way, just like the protruding nanochannel machined by the paper. Since burrs appear at the edge of nanochannel after machining, the paper uses smaller down force, and then step by step increases down force at the edge of the nanochannel to carry out cutting so as to decrease the protruding height of burrs and make the protruding height of burrs at the edge converge to be within the range of 0.54nm as set by the paper. Finally, the paper carries out experimental machining of nanochannel groove on single-crystal silicon by AFM probe. After comparing the simulation results with the experimental results, the paper proves that these two machining methods are both feasible.
目錄
中文摘要
Abstract
圖目錄
表目錄
第一章 緒論
1.1前言
1.2 文獻回顧
1.3研究動機
1.4 本文架構
第二章 原子力顯微鏡簡介與實驗步驟及實驗結果
2.1 原子力顯微鏡操作原理
2.2原子力顯微鏡的操作模式
2.3實驗設備介紹
2.4奈米切削實驗設定(Experimental set-up)
2.5 AFM探針下壓力量測方法:
第三章 利用比下壓能理論建立固定下壓力下之奈米流道加工模型
3.1 比下壓能理論模型及計算比下壓能方法
3.2 以固定下壓力之加工直線奈米流道之凹槽理論模型
3.3 各道次之下壓排除體積之運算以及幾何圖形
3.4 不同形狀奈米流道切削模擬以及實驗探針實驗路徑規劃
3.4.2 正交型奈米流道實驗路徑規劃
3.4.3 Y型奈米流道實驗路徑規劃
3.4.4 U型奈米流道實驗路徑規劃
3.4.5 凸字型奈米流道實驗路徑規劃
第四章 結果與討論
4.1固定下壓力下之奈米流道加工理論模型實驗結果之討論
4.2 固定下壓力下模擬及實驗加工不同層次之直線奈米流道之凹槽
4.3 固定下壓力實驗加工不同形狀奈米流道
第五章 結論與建議
5.1 固定下壓力下之不同形狀奈米流道加工方法之結論
5.2 建議與未來研究方向
參考文獻
1. Wang, W.K., Wuu,D.S., Lina,S.H., Huang,S.Y., Wen, K.S. and Horng ,R.H.,”
Growth and Characterization of InGaN-Based Light-Emitting Diodes on
Patterned Sapphire Substrates”, Journal of Physics and Chemistry of
Solids, vol .69, pp. 714–718 (2008).
2. Lin, B.W., Hsieh, C.Y., Wang, B.M., Hsu, W.C. and Wu, Y-C. S., “Improved
Performance of GaN-Based LEDs by Covering Top C-Plane of Patterned
Sapphire Substrate with Oxide Layer”, Electrochemical and Solid-State
Letters, vol.14, no.8, pp.J48-J50 (2010).
3. J Lee, J.H., Seok-Min Hwang, S.M., Kim, N.S. and Lee, J.H.,” Improved
Performance of GaN-Based LEDs by CoveringTop C-Plane of Patterned Sapphire
Substrate with Oxide Layer”, IEEE ELECTRON DEVICE LETTERS, vol.31, no.7,
pp.698-700 (2010).
4. Binning, G., Quate,C. F. and Gerber, C.,”Atomic Force Microscope”,
Physical Review Letters , vol. 56, pp. 930-933 (1986).
5. Nanjo, H., Nony, L., Yoneya, M. and Aime J.P.,”Simulation of Section
Curve by Phase Constant Dynamic Mode Atomic Force Microscopy in Non-
contact Situation”, Applied Surface Science, vol. 210 , no.1, pp. 49-53
(2003).
6. Lübben, J. F. and Johannsmann ,D., “Nanoscale High-frequency Contact
Mechanics Using an AFM Tip and a Quartz Crystal Resonator”, Langmuir,vol.
20, no.9, pp. 3698-3703 (2004).
7. Tseng, A. A., Jou, S., Notargiacomo, A. and Chen,T.P., ”Recent
Developments in Tip-based Nanofabrication and Its Roadmap”, Journal of
Nanoscience & Nanotechnology, vol. 8, no. 5, pp. 2167–2186 (2008).
8. Fang, T.H., Weng,C.I. and Chang,J.G.,”Machining Characterization of Nano-
lithography Process by Using Atomic Force Microscopy”, Nanotechnology,
vol. 11, no.5, pp. 181-187 (2000).
9. Schumacher, H. W., Keyser, U. F. and Zeitler, U., “Controlled Mechanical
AFM Machining of Two-dimensional Electron systems”, Fabrication of a
single-electron transistor, Physica E., vol.6, no.1, pp. 860-863 (2000).
10. Yan,Y., Sun,T.,Liang, Y.,C. and Dong, S., “Investigation on AFM Based
Micro/nano CNC Machining System”, International Journal of Machine Tools
and Manufacture, Vol.47,no.11, pp. 1651-1659 (2007).
11. Wang ,Z.Q., Jiao, N.D., Tung ,S. and Dong ,Z.L., “Research on the Atomic
Force Microscopy-based Fabrication of Nanochannels on Silicon Oxide
Surfaces”, Chinese Science Bulletin, vol. 55, no. 30, pp. 3466-3471
(2010).
12. Tseng, A.A.,“A Comparison Study of Scratch and Wear Properties Using
Atomic Force Microscopy”, J. Applied Surface Science, vol. 256, no.13,
pp. 4246- 4252 (2010).
13. Lin, Z.C. and Huang, J.C., “The Study of Estimation Method of Cutting
Force for Conical Tool Under Nanoscale Depth of Cut by Molecular
Dynamics”, Nanotechnology, vol.19, pp.115701-1 ~115701-13 (2008).
14. Nga ,C.K., Melkotea ,S.N. , Rahmanb ,M. and Kumar ,A.S., “Experimental
Study of Micro- and Nano-scale Cutting of Aluminum 7075-T6”, Machine
Tools & Manufacture, vol.46, no.9, pp. 929-936 (2006).
15. Peng, P., Shi ,T., Liao, G., Tang,Z., and Liu, C.,”Scratch of Submicron
Grooves on Aluminum Film with AFMDiamond Tip, IEEE International
Conference on Nano/Micro Engineered and Molecular Systems , Shenzhen,
China , pp.983-986 (2009)
16. Fang, F.Z., Wu, H. and Lin, Y.C., “Modeling and Experimental
Investigation on Nanometric Cutting of Monocrystalline Silicon” ,
International Journal of Machine Tools and Manufacture, vol. 45, no. 15,
pp. 1681-1686 (2005).
17. Ogino, T., Shinya, N. and Shirakashi ,J., I., “Scratch Nanolithography on
Si Surface Using Scanning Probe Microscopy: Influence of Scanning
Parameters on Groove Size”, Japanese Journal of Applied Physics ,vol.
47, no. 1, pp. 712- 714 (2008).
18. Chen, Y.J., Hsu, J.H. and Lin, H.,N.,“Fabrication of Metal Nanowires by
Atomic Force Microscopy Nanoscratching and Lift-off Process”,
Nanotechnology,vol. 16,no.8, pp.1112-1115(2005).
19. Tseng, A.A., Shirakashi , J., Nishimura,S., Miyashita,K. and
Notargiacomo,A. ,“ Scratching Properties of Nickel-Iron Thin Film and
Silicon Using Atomic Force Microscopy”, Journal of Applied Physics, v ol.
106, no. 4, pp.44314-1~44314-8 (2009).
20. YAN, Y.D., HU, Z.J., FEI, W.D., YU, H.T., SUN, T. and DONG, S.,”AFM Based
Nanoscratch System”, Nanotechnology and Precision Engineering, vol.6,
No.5, pp. 356-361 (2008).
21. Ming Soon Chenga, Jia Shin Hoa, Cheong Huat Tanb, Jeslyn Pei Sze Wongb,
Lee Ching Ngb,Chee-Seng ”Toha,Development of an electrochemical membrane-
based nanobiosensor forultrasensitive detection of dengue virus”,
Analytica Chimica Acta ,725 (2012) 74– 80.
22. Georgette B. Salieb-Beugelaar, Juliane Teapal, Jan van Nieuwkasteele,Danie¨
l Wijnperle´,JonasO. Tegenfeldt, Fred Lisdat, Albert van den Berg, and Jan
C. T. Eijkel.,” Field-Dependent DNA Mobility in 20 nm High Nanoslits’’,
Nano Lett. 2008 Jul;8(7):1785-90. Epub 2008 Apr 5.
23. Yalinglin, Samirm. Iqbal.,”SILICON-BASED NOVEL BIO-SENSING PLATFORMS AT
THE MICRO AND NANO SCALE’’, ECS Transactions, 16 (15) 25-45 (2009)
24. Daniel Fologea, Marc Gershow, Bradley Ledden, David S. McNabb, Jene A.
Golovchenko, Jiali Li.,” Detecting Single Stranded DNA with a Solid State
Nanopore’’, Nano Lett., 2005 ,Vol. 5, No. 10.
25. Daniel Fologea,James Uplinger,Brian Thomas, David S. McNabb,and Jiali
Li.,” Slowing DNA Translocation in a Solid-State Nanopore’’, Nano
Lett., Vol. 5, No. 9, 2005.
26. J.C.T. Eijkel, W. Sparreboom, L. Shui, G.B. Salieb-Beugelaar, and A.van
den Berg.,” NANOFLUIDICS: FUNDAMENTALS AND APPLICATIONS’’, IEEE ,978-1-
4244-4193-8/09/2009
27. Lingling Shui, Jan C.T. Eijkel, Albert van den Berg.,”Multiphase flow in
micro- and nanochannels’’, Sensors and Actuators B 121 (2007) 263–276.
28. Zone-Ching Lin, Ying-Chih Hsu.,” A study of estimating cutting
depth for multi-pass nanoscale cutting by using atomic force
microscopy’’, Applied Surface Science ,Volume 258, Issue 10, , pp. 4513–
4522(2012)
29. Digital Instruments, Dimension™ 3100 Manual. Version 4.43B, Digital
Instruments Veeco Metrilogy Group, 2000.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔