(34.204.185.54) 您好!臺灣時間:2021/04/16 18:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張舜庭
研究生(外文):Shun-Ting Chang
論文名稱:石灰石水泥之力學與耐久性質研究
論文名稱(外文):Mechanical Properties and Durability of Limestone Cement
指導教授:陳君弢陳君弢引用關係
指導教授(外文):chun-taoc Chen
口試委員:陳君弢
口試日期:2012-07-18
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:營建工程系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:178
中文關鍵詞:石灰石飛灰強度乾縮鋼筋握裹力中性化
外文關鍵詞:limestonefly ashstrengthshrinkagebondingcarbonation
相關次數:
  • 被引用被引用:3
  • 點閱點閱:165
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以不同比例之石灰石部分取代水泥 (0%-25%) 以探討砂漿、混凝土之力學及耐久性質之改變。試驗結果顯示,就力學性質而言,不同水灰比下 (w/c=0.4、0.5、0.6) 抗壓強度隨著取代量的增加而降低,抗彎、抗拉、劈裂及鋼筋握裹強度亦皆隨著石灰石取代量的增加而降低。其中,就抗壓試驗而言,本研究使用飛灰二次取代以期望彌補降低之強度,而試驗結果顯示卜作嵐效應的發生有助於提升晚期強度,達到強度及經濟上之效益。另一方面,耐久性質試驗的結果顯示,水泥砂漿試體之乾縮量隨著取代量增加而降低,在抗硫酸鹽及水泥砂漿膨脹量方面亦隨著取代量的增加而降低。另外,隨著石灰石的取代,中性化速度有加快之現象。整體而言,雖然添加石灰石會增加部份耐久性能,但在力學性質方面則可能因過量的取代而造成強度的大幅降低。
This study explores the mechanical properties and durability of the limestone cements. The limestone was added up to 25% by volume. Results showed that the compressive strengths of the limestone mortars were reduced by the limestone addition. Similar tendencies were found in the flexural strengths, the tensile strengths, the splitting strengths, and the bonding strengths. However, the reduced long-term compressive strengths could be compensated by the addition of fly ash, which further reduced the use of cement. On the other hand, as the limestone addition was increased, the shrinkage, sulfate expansion, and water expansion was reduced, but the carbonation was increased. In general, although the durability of the cements was mostly improved by the limestone addition, the significant reduction in the mechanical properties at high dosages should be noticed.
摘要
Abstract
誌謝
總目錄
表目錄
圖目錄
第一章 緒論
1.1研究動機
1.2研究目的
1.3研究方法與流程
第二章 文獻回顧
2.1石灰石
2.1.1石灰石介紹
2.1.2石灰石水泥之力學性質
2.2飛灰
2.2.1飛灰介紹
2.2.2飛灰之力學性質
2.3石灰石與飛灰之互制
2.4水泥
2.4.1水泥的水化機理
2.4.2水泥的放熱反應
2.4.3石灰石水泥的放熱曲線
2.5鋼筋握裹力
2.5.1 鋼筋握裹力概述
2.5.2 鋼筋握裹力破壞模式
2.5.3 石灰石之鋼筋握裹力
2.6中性化
2.6.1中性化定義
2.6.2碳化機理
2.6.3中性化之影響因子
2.6.4石灰石對中性化之影響
2.6.5中性化之測定方法
第三章 試驗計畫
3.1試驗變數
3.1.1水灰比
3.1.2石灰石取代量
3.1.3飛灰取代量
3.1.4濕度環境
3.1.5試體編碼說明
3.2試驗材料與配比
3.3試體製作
3.3.1力學試驗試體
3.3.2拉拔試體
3.3.3碳化試體
3.3.4耐久試體
3.4試驗原理及方法
3.4.1力學性質
3.4.2中性化試驗
3.5試驗設備
3.5.1力學試驗設備
3.5.2耐久試驗設備
3.5.3中性化環境設備
3.5.4微觀結構設備
3.5.5其他設備
第四章 試驗結果與分析
4.1 前言
4.2 力學性質
4.2.1 石灰石取代之抗壓強度
4.2.2 石灰石與飛灰取代之抗壓強度
4.2.3 抗彎強度
4.2.4 抗拉強度
4.2.5 劈裂試驗
4.2.6 拉拔強度
4.3 耐久性質
4.3.1 乾縮性質
4.3.2 硫酸鹽膨脹
4.3.3 水中膨脹量
4.3.4 中性化
4.4 水化熱
4.5微觀結構分析
4.5.1 XRD微觀分析
4.5.2 SEM微觀分析
第五章 結論與建議
5.1結論
5.2建議
參考文獻
附錄A XRD圖譜
附錄B 熱傳導量測資料
[1]Oates, J.A.H., "Lime and Limestone-Chemistry and Technology, Production and uses". WILEY-VCH Verlag GmbH, D-69469 Weinheim (Federal Republic of Germany), Derbyshire, SK17 9 AH, England, pp. 475, 1998.
[2]Bonavetti, V., Donza, H., Menendez, G., Cabrera, O., and Irassar, E.F., "Limestone filler cement in low w/c concrete: A rational use of energy", Cement and Concrete Research, Vol. 33, No.6, pp. 865-871, 2003.
[3]Tsivilis, S., Kakali, G., Skaropoulou, A., Sharp, J.H., and Swamy, R.N., "Use of mineral admixtures to prevent thaumasite formation in limestone cement mortar", Cement & Concrete Composites, Vol. 25, No.8, pp. 969-976, 2003.
[4]Bensted, J., "Thaumasite - background and nature in deterioration of cements, mortars and concretes", Cement & Concrete Composites, Vol. 21, No.2, pp. 117-121, 1999.
[5]Hartshorn, S.A., Sharp, J.H., and Swamy, R.N., "Thaumasite formation in Portland-limestone cement pastes", Cement and Concrete Research, Vol. 29, No.8, pp. 1331-1340, 1999.
[6]Barkera, A.P. and Hobbsb, D.W., "Performance of Portland limestone cements in mortar prisms immersed in sulfate solutions at 5 oC",Cement & Concrete Composites, Vol. 21, pp. 129-137, 1999.
[7]Vuk, T., Tinta, V., Gabrovsek, R., and Kaucic, V., "The effects of limestone addition, clinker type and fineness on properties of Portland cement", Cement and Concrete Research, Vol. 31, No.1, pp. 135-139, 2001.
[8]Menendez, G., Bonavetti, V., and Irassar, E.F., "Strength development of ternary blended cement with limestone filler and blast-furnace slag", Cement & Concrete Composites, Vol. 25, No.1, pp. 61-67, 2003.
[9]Ramezanianpour, A.A., Ghiasvand, E., Nickseresht, I., Mahdikhani, M., and Moodi, F., "Influence of various amounts of limestone powder on performance of Portland limestone cement concretes", Cement & Concrete Composites, Vol. 31, No.10, pp. 715-720, 2009.
[10]Tsivilis, S., Chaniotakis, E., Kakali, G., and Batis, G., "An analysis of the properties of Portland limestone cements and concrete", Cement & Concrete Composites, Vol. 24, No.3-4, pp. 371-378, 2002.
[11]ASTM C150-11, "Standard Specification for Portland Cement", ASTM International, West Conshohocken, PA, 2011.
[12]Ozturan, T. and Cecen, C., "Effect of coarse aggregate type on mechanical properties of concretes with different strengths", Cement and Concrete Research, Vol. 27, No.2, pp. 165-170, 1997.
[13]Garboczi, E.J. and Bentz, D.P., "Digital simulation of the aggregate-cement paste interfacial zone in concrete", Vol. 6, pp. 6, 1991.
[14]Yasar, E., Erdogan, Y., and Kilic, A., "Effect of limestone aggregate type and water-cement ratio on concrete strength", Materials Letters, Vol. 58, No.5, pp. 772-777, 2004.
[15]Tsivilis, S., Batis, G., Chaniotakis, E., Grigoriadis, G., and Theodossis, D., "Properties and behavior of limestone cement concrete and mortar", Cement and Concrete Research, Vol. 30, No.10, pp. 1679-1683, 2000.
[16]Bentz, D.P., Sato, T., de la Varga, I., and Weiss, W.J., "Fine limestone additions to regulate setting in high volume fly ash mixtures", Cement & Concrete Composites, Vol. 34, No.1, pp. 11-17, 2012.
[17]Itim, A., Ezziane, K., and Kadri, E.-H., "Compressive strength and shrinkage of mortar containing various amounts of mineral additions", Vol. 25, No.8, pp. 3603-3609, 2011.
[18]Tsivilis, S., Chaniotakis, E., Badogiannis, E., Pahoulas, G., and Ilias, A., "A study on the parameters affecting the properties of Portland limestone cements", Cement & Concrete Composites, Vol. 21, No.2, pp. 107-116, 1999.
[19]De Weerdt, K., Kjellsen, K.O., Sellevold, E., and Justnes, H., "Synergy between fly ash and limestone powder in ternary cements", Cement & Concrete Composites, Vol. 33, No.1, pp. 30-38, 2011.
[20]Dhir, R.K., Limbachiya, M.C., McCarthy, M.J., and Chaipanich, A., "Evaluation of Portland limestone cements for use in concrete construction", Materials and Structures, Vol. 40, No.5, pp. 459-473, 2007.
[21]ACI Committee 201, "Guide to Durable Concrete", ACI Materials Journal,Detroit, Michigan, 1992.
[22]Mindess, S. and Young, J.F., "Concrete". Prentice-Hall, Englewood Cliffs, New Jersy, NY, pp. 617, 2002.
[23]黃兆龍,「混凝土性質與行為」,第3版,台北市, pp. 77,2007。
[24]王哲明,「使用膨脹劑對水泥質材料影響之研究」,碩士論文,國立台灣海洋大學河海工程學系,pp. 15,基隆 (2004)。
[25]沈得縣,「高等混凝土技術講義」,第3版,台北市, pp. 3-5,2008。
[26]Mehta, P.K. and Monteiro, P.J.M., "Concrete Structure Properties and Materials". Prentice Hall, Englewood Cliffs, New Jersey, U.S.A., 1986.
[27]Carlos, A., Masumi, I., Hiroaki, M., Maki, M., and Takahisa, O., "The effects of limestone aggregate on concrete properties", Construction and Building Materials, Vol. 24, No.12, pp. 2363-2368, 2010.
[28]Bouasker, M., Mounanga, P., Turcry, P., Loukili, A., and Khelidj, A., "Chemical shrinkage of cement pastes and mortars at very early age: Effect of limestone filler and granular inclusions", Cement & Concrete Composites, Vol. 30, No.1, pp. 13-22, 2008.
[29]Lee, S.T., Hooton, R.D., Jung, H.S., Park, D.H., and Choi, C.S., "Effect of limestone filler on the deterioration of mortars and pastes exposed to sulfate solutions at ambient temperature", Cement and Concrete Research, Vol. 38, No.1, pp. 68-76, 2008.
[30]蔡德明. 公共工程飛灰混凝土使用手冊之介紹(上). http://www.twce.org.tw/info/%E6%8A%80%E5%B8%AB%E5%A0%B1/189-2-2.htm 2005.
[31]蔡德明. 公共工程飛灰混凝土使用手冊之介紹(下). http://www.twce.org.tw/info/%E6%8A%80%E5%B8%AB%E5%A0%B1/190-3-1.htm 2005.
[32]ASTM C 618-12, "Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete", ASTM International,West Conshohocken, PA, 2012.
[33]Achal, V., Pan, X.L., and Ozyurt, N., "Improved strength and durability of fly ash-amended concrete by microbial calcite precipitation", Ecological Engineering, Vol. 37, No.4, pp. 554-559, 2011.
[34]Ravindrarajah, R.S. and Tam, C.T., "Properties of concrete containing low calcium fly ash under hot and humid climate", Cement & Concrete Composites, Vol. 114, pp. 139-156, 1989.
[35]Mounanga, P., Khokhar, M.I.A., El Hachem, R., and Loukili, A., "Improvement of the early-age reactivity of fly ash and blast furnace slag cementitious systems using limestone filler", Materials and Structures, Vol. 44, No.2, pp. 437-453, 2011.
[36]ACI Committee 408, "State of the Art Report on Bond Under Cyclic Loads", ACI Materials Journal,Detroit, Michigan, 1992.
[37]Ezeldin, A.S. and Baloguru, P.N., "Bond Behavior of Normal and High-Strength Fiber Reinforced Concrete.", ACI Materials Journal, Vol. 86, No.5, pp. 515-524, 1989.
[38]Verbeck, G.J., "Carbonation of Hydrated Portland Cement". Chicago, Illinois, 1958.
[39]Chi, J.M., Huang, R., and Yang, C.C., "Effects of carbonation on mechanical properties and durability of concrete using accelerated testing method", Journal of Marine Science and Technology, Vol. 10, No.1, pp. 14-20, 2002.
[40]Papadakis, V.G., Vayenas, C.G., and Fardis, M.N., "A Reaction Engineering Approach to the Problem of Concrete Carbonation", AIChE Journal, Vol. 35, No.10, pp. 1639-1650, 1989.
[41]Nagataki, S. and Ujike, I., "Effect of Heating Condition on Air Permeability of Concrete at Elevated Temperature", Transactions of the Japanese Concrete Institute, Vol. 10, pp. 147-154, 1980.
[42]Beandt, A.M., "Cement-based Composites: Mechanical Proporties and proformance.". E&FN SPON,New York, NY, 1995.
[43]王櫻茂,「混凝土構造物的耐久性系列-鹼.骨材反應 (I) 與 中性化 (II)」,第1版,台南市, pp. 2000。
[44]ASTM C127-07, "Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Coarse Aggregate", ASTM International,West Conshohocken, PA, 2007.
[45]ASTM C 29-09, "Standard Test Method for Bulk Density (“Unit Weight”) and Voids in Aggregate", ASTM International,West Conshohocken, PA, 2009.
[46]ASTM C452/C452M-10, "Standard Test Method for Potential Expansion of Portland-Cement Mortars Exposed to Sulfate", ASTM International,West Conshohocken, PA, 2010.
[47]ASTM C305-06, "Standard Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency", ASTM International,West Conshohocken, PA, 2006.
[48]ASTM C192/C192M-07, "Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory", ASTM International,West Conshohocken, PA, 2007.
[49]ASTM C490/C490M-10, "Standard Practice for Use of Apparatus for the Determination of Length Change of Hardened Cement Paste, Mortar, and Concrete", ASTM International,West Conshohocken, PA, 2010.
[50]ASTM C596-09, "Standard Test Method for Drying Shrinkage of Mortar Containing Hydraulic Cement", ASTM International,West Conshohocken, PA, 2009.
[51]ASTM C511-09, "Standard Specification for Mixing Rooms, Moist Cabinets, Moist Rooms, and Water Storage Tanks Used in the Testing of Hydraulic Cements and Concretes", ASTM International,West Conshohocken, PA, 2009.
[52]ASTM C1038/C1038M, "Standard Test Method for Expansion of Hydraulic Cement Mortar Bars Stored in Water", ASTM International,West Conshohocken, PA, 2010.
[53]ASTM C109/C109M-08, "Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens)", ASTM International,West Conshohocken, PA, 2008.
[54]ASTM C349-08, "Standard Test Method for Compressive Strength of Hydraulic-Cement Mortars (Using Portions of Prisms Broken in Flexure)", ASTM International,West Conshohocken, PA, 2008.
[55]ASTM C307-03, "Standard Test Method for Tensile Strength of Chemical-Resistant Mortar, Grouts, and Monolithic Surfacings", ASTM International,West Conshohocken, PA, 2003.
[56]ASTM C496/C496M-11, "Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens", ASTM International,West Conshohocken, PA, 2011.
[57]ASTM C234, "Standard Test Method for Comparing Concrete on the Basis of the Bond Developed with Reinforcing Steel", ASTM International,West Conshohocken, PA, 1991.
[58]RILEM CPC-18, "CPC-18 Mesurement of hardened concrete cabonation depth", Materials and Structures,West Conshohocken, Materials and Structures, 1985.
[59]ASTM C39/C39M, "Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens", ASTM International,West Conshohocken, PA, 2012.
[60]ASTM C143/C143M-10, "Standard Test Method for Slump of Hydraulic-Cement Concrete", ASTM International,West Conshohocken, PA, 2010.
[61]Neville, A.M., "Properties of Concrete". 3 ed., Pitman, New York, NY, pp. 391-395, 1981.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔