跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/23 04:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:尤嘉龠
研究生(外文):Chia-Yueh Yu
論文名稱:加勁擋土結構物內部穩定之可靠度設計:考慮側向土壓法與K-stiffness法以及模式不確定性
論文名稱(外文):Reliability-Based Design for Internal Stability of Geosynthetic-Reinforced Soil Structures: Considering Earth Pressure and K-Stiffness Methods and Their Model Uncertainty
指導教授:楊國鑫楊國鑫引用關係
指導教授(外文):Kuo-Hsin Yang
口試委員:楊國鑫
口試日期:2012-07-19
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:營建工程系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:168
中文關鍵詞:破壞機率安全係數加勁擋土結構物可靠度設計
外文關鍵詞:Geosynthetic-reinforced soil (GRS) structuresReliability-based design (RBD)Failure probabilityFactor of safety
相關次數:
  • 被引用被引用:3
  • 點閱點閱:202
  • 評分評分:
  • 下載下載:29
  • 收藏至我的研究室書目清單書目收藏:0
現今加勁擋土結構物(Geosynthetic-Reinforced Soil structures)之設計主要以評估安全係數的方式進行定量分析(deterministic approach),然而以安全係數為主的設計方式並未能通盤考慮到設計參數與計算模式的不確定性。因此,本論文選用機率方式(probabilistic approach)並使用兩種加勁材張力預測模式(側向土壓法與K-stiffness法)進行加勁擋土牆內部穩定之可靠度分析。本論文首先評估各種可靠度分析方式(如蒙地卡羅模擬MCS、一階可靠度分析FORM與一階二次矩法FOSM)對破壞機率計算的影響。之後,進行參數靈敏度分析,找出對加勁擋土牆內部穩定影響較大(如破壞機率變化較大)的參數。進一步,本論文利用可靠度分析發展出一系列可靠度設計圖。本論文舉例說明可靠度設計圖之使用步驟與驗證其設計之準確性。最後,本論文也探討計算模式不確定性(如加勁材張力預測值與實測值之偏差)對可靠度設計之影響。本研究發現於未考慮模式不確定下,選用側向土壓法計算加勁材斷裂之破壞機率遠大於使用K-stiffness法所計算之破壞機率。而在拉出破壞模式下,選用側向土壓法與K-stiffness法計算之破壞機率較為接近。若考慮模式不確定,側向土壓法所計算之破壞機率與K-stiffness法計算值較未考慮模式不確定下為接近。本研究結果預期能對加勁擋土牆內部穩定之可靠度分析與設計提出實用的貢獻。
Geosynthetic-Reinforced Soil (GRS) structures are conventionally designed using the deterministic approach to calculate factor of safeties. This approach, however, is not able to consider variability and uncertainty from design variables and prediction models. On the other hand, the reliability approach considers the possible variations in the design parameters and gives more realistic estimates of the safety of the structure and the possible risk of failure. Therefore, this study presents reliability-based design (RBD) for internal stability of GRS structures. Two prediction methods (i.e., lateral earth pressure and K-stiffness methods) were used to predict reinforcement tensile loads and their model uncertainty on RBD results was investigated. This study first compared failure probabilities and reliability indices calculated by different reliability methods: Monte Carlo simulation (MCS), first-order reliability method (FORM), first-order second-moment method (FOSM). Afterward, a sensitivity study was conducted using MCS to identify design variables that affect the probability of internal failure of GRS structures. Based on the results of the sensitive study, a series of additional simulations were conducted where the significant variables were varied over a broad range. The results of these simulations were used to develop a series of RBD charts. A design example was provided to illustrate the RBD procedure and to validate the proposed RBD charts. Last, the effect of model uncertainty on RBD results was evaluated. The model uncertainty was statistically quantified using a model factor, defined as the measured reinforcement load divided by the predicted reinforcement load. The impact of the model factor and its potential correlation with the predicted reinforcement tensile loads on RBD results was discussed. This study demonstrates the RBD results using two prediction methods become more consistent when the model uncertainty is considered. The results obtained from this study provide insightful information for RBD for internal stability of GRS structures.
摘 要 I
ABSTRACT II
誌 謝 III
目 錄 IV
表目錄 VI
圖目錄 IX

第一章 緒論 1
1.1研究動機及目的 1
1.2研究方法 4
1.3論文架構 5
第二章 文獻回顧 7
2.1加勁土壤內部穩定結構設計 7
2.2加勁材張力預測方法 10
2.2.1側向土壓法 10
2.2.2 K-stiffness法 12
2.3可靠度分析方法應用於加勁擋土結構之內部穩定 15
2.3.1 Chalermyanont and Benson (2004) 15
2.3.2 Sayed et al. (2008) 18
2.3.3 Basha and Babu (2011) 21
第三章 加勁擋土牆之可靠度分析 23
3.1可靠度分析方法介紹 23
3.1.1蒙地卡羅模擬 (MCS) 25
3.1.2一階可靠度分析 (FORM) 26
3.1.3一階二次矩法 (FOSM) 27
3.1.4極限狀態函數 (G(X)) 27
3.2基本參數與隨機參數介紹 28
3.3不同可靠度分析方法之比較 31
3.3.1側向土壓法-斷裂(Breakage)模式 32
3.3.2側向土壓法-拉出(Pullout)模式 34
3.3.3 K-stiffness法-斷裂(Breakage)模式 37
3.3.4 K-stiffness-拉出(Pullout)模式 40
3.3.5不同土壓力方法的比較 42
3.4參數靈敏度分析 44
第四章 可靠度設計圖 53
4.1可靠度設計圖計算說明 53
4.2可靠度設計內部穩定之加勁材斷裂模式 56
4.2.1側向土壓法 56
4.2.2 K-stiffness 法 61
4.2.3比較與討論 65
4.3可靠度設計內部穩定之加勁材拉出模式 66
4.3.1側向土壓法 66
4.3.2 K-stiffness 法 74
4.3.3比較與討論 81
第五章 案例與驗證說明 82
5.1加勁材斷裂破壞可靠度設計之驗證 84
5.1.1側向土壓法:Pf=10-2 84
5.1.2側向土壓法:Pf=10-4 87
5.1.3 K-stiffness法:Pf=10-2 89
5.1.4 K-stiffness法:Pf=10-4 92
5.2加勁材拉出破壞可靠度設計之驗證 94
5.2.1側向土壓法:Pf=10-2 94
5.2.2側向土壓法:Pf=10-4 100
5.2.3 K-stiffness法:Pf=10-2 105
5.2.4 K-stiffness法:Pf=10-4 111
第六章 模式不確定性之探討 117
6.1 Tmax實測值與預測值之偏差 117
6.2可靠度設計模式之不確定性計算步驟 120
6.3可靠度設計模式之不確定性斷裂破壞 124
6.3.1側向土壓法 124
6.3.2 K-stiffness法 129
6.3.3比較與討論 134
6.4可靠度設計模式之不確定性拉出破壞 139
6.4.1側向土壓法 139
6.4.2 K-stiffness法 147
6.4.3比較與討論 155
第七章 結論與建議 160
7.1結論 160
7.2建議 163
參考文獻 165
台北市土木技師公會 (2003) “結合生態與景觀之加勁擋土結構設計及施工規範”, 詹士出版社

AASHTO (2002) “Standard Specifications for Highway Bridges”, American Association of State Highway and Transportation Officials, 17th Edition, Washington, DC, USA, 689p

Allen, T.M., Bathurst, R.J., Holtz, R.D., Walters, D.L. and Lee, W.F. (2003) “A New Working Stress Method for Prediction of Reinforcement Loads in Geosynthetic Walls”, Canadian Geotechnical Journal, v40, n5, p976-994

Allen, T.M., Bathurst, R.J., Holtz, R.D., Lee, W.F. and Walters, D.L. (2004) “New Method for Prediction of Loads in Steel Reinforced Soil Walls”, Journal of Geotechnical and Geoenvironmental Engineering, v130, n11, p1109-1120

Alpsten, G.A. (1972) “Variations in Mechanical and Cross-sectional Properties of Steel”, Proc., Int. Conf. on Planning and Design of Tall Buildings, Lehigh University, Bethlehem, Pa., 1b, p775-805

Anderson, P. L., Gladstone, R. A., and Sankey, J. E. (2012) “State of the Practice of MSE Wall Design for Highway Structures”, GeoCongress 2012 Geotechnical Engineering State of the Art and Practice : Keynote Lectures from GeoCongress 2012, K. Rollins, and D. Zekkos, eds., American Soceity of Civil Engineers, Oakland, p443-463

Baecher, B.H. (1987) “Geotechnical Risk Analysis User’s Guide” FHWA/RD-87-011, Federal Highway Administration, McLean, Va

Basha, B.M. and Babu, G.L.S. (2011) “Seismic Reliability Assessment of Internal Stability of Reinforced Soil Walls Using the Pseudo-dynamic Method”, Geosynthetics International, v18, n5, p221-241
Bathurst, R.J., Allen, T.M. and Walters D.L. (2005) “Reinforcement Loads in Geosynthetic Walls and the Case for A New Working Stress Design Method”, Geotextiles and Geomembrances, v23, p287-322

Bathurst, R.J., Miyata, Y., Nernheim, A. and Allen, T.M. (2008) “Refinement of K-stiffness Method for Geosynthetic Reinforced Soil Walls”, Geosynthetics International, v15, n4, p269-295

Chalermyanont, T. and Benson, C. (2004) “Reliability-based Design for Internal Stability of Mechanically Stabilized Earth Walls”, Journal of Geotechnical and Geoenvironmental Engineering, v130, n2, p163-173

Chalermyanont, T. and Benson, C. (2005) “Reliability-based Design for External Stability of Mechanically Stabilized Earth Walls”, International Journal of Geomechanics, v5, n3, p196-205

Christian, J.T. (2004) “Geotechnical Engineering Reliability: How Well Do We Know What We Are Doing?”, Journal of Geotechnical and Geoenvironmental Engineering, v130, n10, p985-1003

Dithinde, M., Phoon, K.K., Wet, M.D. and Retief, J.V. (2011) “Characterization of Model Uncertainty in the Static Pile Design Formula”, Journal of Geotechnical and Geoenvironmental Engineering, v137, n1, p70-85

Duncan, J.M. (2000) “Factors of Safety and Reliability in Geotechnical Engineering”, Journal of Geotechnical and Geoenvironmental Engineering, v126, n4, p307-316

Elias, V., Christoper, B.R., and Berg, R.R. (2001) “Mechanically Stabilized Earth Walls and Reinforced Soil Slopes Design and Construction Guidekines”, Report No. FHWA-NHI-00-043, National Highway Institute, Federal Highway Administration, Washingtom, D.C. March



FHWA (2001) “Mechanically stabilized earth walls and reinforced soil slopes design and construction guidelines”, National Highway Insitute federal highway administration U.S. Department of Transportation, Washingtom, D.C.

Hoeg, H. and Murarka, R.P. (1974) “Probabilistic Analysis and Design of A Retaining Wall”, J. Geotech. Eng. Div., Am. Soc. Civ. Eng., 100(3), p349-366

Huang, B. and Bathurst, R.J. (2009) “Evaluation of Soil-geogrid Pullout Models Using a Statistical Approach”, Geotechnical Testing Journal, v32, n6

Kulhawy, F.H., Birgisson, B. and Grigoriu, M.D. (1992) “Reliability-Based Foundation Design for Transmission Line Structures”, Electric Power Research Inst., Palo Alto, CA (United States); Cornell Univ., Ithaca, NY (United States)

Kulhawy, F.H. and Phoon, K.K. (1996) “Engineering Judgment in the Evolution from Deterministic to Reliability-Based Foundation Design”, Uncertainty’ 96, Geptechnical Special Publication, n58, ASCE, New York, 1, p29-48

Low, B.K. and Tang, W.H. (1997) “Reliability Analysis of Reinforced Embankments on Soft Ground”, Can. Geotech. J., 34, p672-685

Lumb, P. (1966) “The Variability of Natural Soils”, Can. Geotech. J., 3(2), p74-97

NCMA (2010) “Design manual for segmental retaining walls”, National Concrete Masonry Association Herndon, VA

Phoon, K.K. and Kulhawy, F.H. (1999) “Characterization of Geotechnical Variability”, Can. Geotech. J., 36, p612-624




Phoon, K.K. (2005) “Reliability-based Design Incorporating Model Uncertainties”, Proc., 3rd Int. Conf. on Geotechnical Engineering and 9th Yearly Meeting of Indonesian Society for Geotechnical Engineering, Diponegoro University, Semorang, Indonesia, p191-203

Sayed, S., Dodagoudar, G.R. and Rajagopal, K. (2008) “Reliability Analysis of Reinforced Soil Walls under Static and Seismic Forces”, Geosynthetics International, v15, n4, p246-257

Vanmarcke, E. (1983) Random Fields-Analysis and Synthesis, MIT Press, Cambridge, Mass

Yang, K.H. (2009) Stress Distribution with in Geosynthetic-Reinforced Soil Structures, Ph.D. Dissertation, University of Texas at Austin, Austin, Texas, USA

Yang, K.H., Ching, J.Y. and Zornberg J.G. (2011) “Reliability-based Design for External Stability of Narrow Mechanically Stabilized Earth Walls: Calibration from Centrifuge Tests”, Journal of Geotechnical and Geoenvironmental Engineering, v137, n3, p239-253
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top