(3.230.76.48) 您好!臺灣時間:2021/04/12 14:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:許婉汝
研究生(外文):Wan-zu Hsu
論文名稱:穿戴式復健動作監控系統之設計與評估
論文名稱(外文):Design and Evaluation of a Wearable Rehabilitative Movement Monitoring System
指導教授:林淵翔許維君許維君引用關係
口試委員:林淵翔許維君
口試日期:2012-07-19
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:醫學工程研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:128
中文關鍵詞:動作追蹤慣性感測器穿戴式感測器遠距復健訓練
外文關鍵詞:Motion CaptureInertial SensorWearable SensorTele- RehabilitationExercise
相關次數:
  • 被引用被引用:2
  • 點閱點閱:743
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
因動作障礙至復健部求診的患者日益增多,且大多以每週2到3次的頻率至醫院回診。這對居住偏遠地區病患相當不便。無形中也增加了醫院對物理治療師、職能治療師的人力需求以確保病患復健執行品質。因此遠距居家復健技術成為當今重要的發展課題。
本研究的目的是要建構一套符合臨床使用需求的遠距復健系統,協助居家端與醫院端進行復健資訊聯繫。本系統包括一個以三軸陀螺儀為主要動作感測元件的穿戴式復健動作監控裝置和復健資訊系統。本系統主要功能如下:(1)語音導引病患執行確實且正確的復健動作。(2)即時讓病患自行判斷動作的正確度。(3)協助計數「正確動作」次數。(4)對錯誤動作進行分類並告知錯誤原因。(5)具備遠距處方平台。
穿戴式復健動作監控裝置在角速度19.9(°/s)、55.2(°/s)和95.3(°/s)最大誤差分別為3.0°±7.0°、1.5°±1.7°和1.3°±1.8°。在實際人體動作實驗中與光學立體攝影系統做為比對。結果顯示:本系統可以提供一個具臨床參考價值之人體動作角度追蹤。
Patients with movement disorders for the treatments of physical therapy and other rehabilitative intervention are increasing in number. Most of them attend therapeutic sessions with the frequency about 2 to 3 times weekly, which in not convenient to those patients who live in the remote region. In addition, intensive medical manpower, including physical therapist and occupational therapist, is always required and essential to good rehabilitation qualities. So, tele-rehabilitation becomes a potentially important developed science and technology.
The purpose of this study is to construct a tele-rehabilitation system which fit the needs of therapist and to help providing crucial information of movement which transferring between the hospital and home along the rehabilitation courses. This system includes a wearable human motion capture device and a movement information system, where the main sensor of this wearable human motion capture device is a three-axis gyroscope. The main functions of this system are as follows, (1) The voice guidance which help patients to perform therapeutic exercise correctly and accurately. (2) With the real time machine-patient communication, patients can better determine the quality and accuracy of movements that they are performing. (3) Help counting and documentation of the number of "correct movement". (4) Classification of commonly seen incorrect movements and inform the reason of incorrect moving based on these classification. (5) Establish a tele-prescription platform.
The maximum error of the wearable human motion capture device were 3.0°±7.0°, 1.5°±1.7°and 1.3°±1.8°at the angular velocity 19.9(°/s) , 55.2(°/s) and 95.3(°/s) respectively, comparing with 3D Stereophotographic system at actual human motion experiment. This system can provide a reference value for human motion tracking in clinical use.
中文摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 IX
第一章 緒論 1
1.1 動機 1
1.2 文獻回顧 3
1.2.1 人體關節角度量測與相關研究 3
1.2.2 復健資訊與回饋系統相關研究 9
1.3 研究目的 13
1.4 論文架構 14
第二章 系統設計 15
2.1 臨床人員問卷調查 15
2.2 系統架構 16
2.3 穿戴式復健動作監控裝置 18
2.3.1 硬體架構圖 18
2.3.2 感測器原理介紹 21
2.3.3 實際硬體 23
2.4 韌體角度計算演算法 24
2.4.1 陀螺儀數據讀取 25
2.4.2 梯形積分 26
2.4.3 動作序列計算 33
2.5 復健參數設定介紹 37
2.6 韌體動作判斷演算法 39
2.6.1 醫院端記錄標準動作 39
2.6.2 居家端復健模式(以單軸動作為例) 42
2.7 居家和醫院端的軟體開發 46
2.7.1介面設計 47
2.7.2系統運作流程 48
第三章 實驗設計與結果 58
3.1 實驗材料 58
3.2 實驗一 59
3.2.1 實驗目的與實驗流程 59
3.2.2 實驗結果 60
3.3 實驗二 63
3.3.1 實驗目的與實驗流程 63
3.3.2 實驗結果 63
3.4 實驗三 67
3.4.1 實驗目的與實驗流程 67
3.4.2 實驗結果 67
3.5 實驗四 68
3.5.1 實驗目的與實驗流程 68
3.5.2 實驗結果 68
3.6 實驗五 71
3.6.1 實驗目的與實驗流程 71
3.6.2 實驗結果 73
3.7 實驗六 82
3.7.1 實驗目的與實驗流程 82
3.7.2 實驗結果 84
第四章 討論 89
4.1實驗二 89
4.2實驗三 91
4.3實驗四 93
4.4實驗五 94
4.5實驗六 97
第五章 結論與未來展望 98
參考文獻 99
附錄一 問卷 103
附錄二 電路設計圖 107

[1]"International Cardiovascular Disease Statistics ", American Heart Association2004.
[2]W. H. Organization, "The global burden of cerebrovascular," Global Burden of Disease, 2000.
[3]W. H. Organization, "The Atlas of Heart Disease and Stroke," Cardiovascular disease, .
[4]W. H. Organization, "50 facts," The world health report, 1997.
[5]J. M. Naylor, R. Mittal, K. Carroll, and I. A. Harris, "Introductory insights into patient preferences for outpatient rehabilitation after knee replacement: implications for practice and future research," J Eval Clin Pract, vol. 18, pp. 586-92, Jun 2012.
[6]C. Anderson, "Home or hospital for stroke rehabilitation results of a randomized controlled trial Ii cost minimization analysis at 6 months, Stroke," American Heart Association, pp. 1032-1037, 2000.
[7]J. M. Geddes and M. A. Chamberlain, "Home-based rehabilitation for people with stroke a comparative study of six community services providing coordinated, multidisciplinary treatment," Clinical Rehabilitation, vol. 15, pp. 589–599, Jun 1 2001.
[8]H. Sveistrup, "Motor rehabilitation using virtual reality," J Neuroeng Rehabil, vol. 1, p. 10, Dec 10 2004.
[9]H. Zhou and H. Hu, "Inertial sensors for motion detection of human upper limbs," Sensor Review, vol. 27, pp. 151–158, Feb 2007.
[10]K. S. Thomas, K. R. Muir, M. Doherty, A. C. Jones, S. C. O'Reilly, and E. J. Bassey, "Home-based exercise programme for knee pain and knee osteoarthritis a randomized control trial," BMJ, vol. 325, OCT 2002.
[11]H. Zhou and H. Hu, "A Survey - Human Movement Tracking and Stroke Rehabilitation," TECHNICAL REPORT: CSM-420, University of Essex, 2004.
[12]S. Dhurjaty, "The Economics of Telerehabilitation," TELEMEDICINE JOURNAL AND e-HEALTH, vol. 10, pp. 196-200, Num 2004.
[13]G. C. Burdea, "Keynote Address Virtual Rehabilitation—Benefits and Challenges," Methods Inf Med, pp. 519-523, 2003.
[14]W.-C. Hsu, Wang, T.-M., Liu, M.-W., Chang, C.-F., Chen, H.-L., and Lu, T.-W, "Control of body’s center of mass motion during level walking and obstacle-crossing in patients with knee osteoarthritis.," Journal of Mechanics., vol. 26, pp. 229-237, 2010.
[15]W. C. Hsu, M. W. Liu, and T. W. Lu, "Lower limb joint position sense in patients with type II diabetes mellitus," Biomedical Engineering - Applications, Basis and Communications, p. In press, In press.
[16]H. Zhou and H. Hu, "Human motion tracking for rehabilitation—A survey," Biomedical Signal Processing and Control, May 2007.
[17]J. E. Lenz, "A review of magnetic sensors," Proceedings of the IEEE, vol. 78, pp. 973-989, JUNE 1990.
[18]H. Zhou and H. Hu, "Reducing Drifts in the Inertial Measurements of Wrist and Elbow Positions," Transactions on Instrumentation and Measurement, vol. 59, pp. 575-585, March 2010.
[19]S. S. Hemami and A. R. Reibman, "No-reference image and video quality estimation: Applications and human-motivated design," Signal Processing: Image Communication, vol. 25, pp. 469-481, 2010.
[20]T. Hester, R. Hughes, D. M. Sherrill, B. Knorr, M. Akay, J. Stein, and a. P. Bonato, "Using Wearable Sensors to Measure Motor Abilities following Stroke," Wearable and Implantable Body Sensor Networks, 2006. BSN 2006. International Workshop on, pp. 4-8, 3-5, April 2006.
[21]E. J. W. V. Someren, "Actigraphic monitoring of movement and rest-activity rhythms in aging, Alzheimer's disease, and Parkinson's disease," Rehabilitation Engineering, IEEE Transactions on vol. 5, pp. 394-398, Dec 1997.
[22]D. M. Karantonis, M. R. Narayanan, M. Mathie, N. H. Lovell, and B. G. Celler, "Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring.," Information Technology in Biomedicine, IEEE Transactions on vol. 10, pp. 156-167, Jan 2006.
[23]S. H. Lee, H. D. Park, S. Y. Hong, K. J. Lee, and Y. H. Kim, "A Study on the Activity Classification Using a Triaxial Accelerometer," Engineering in Medicine and Biology Society, 2003. Proceedings of the 25th Annual International Conference of the IEEE vol. 3, pp. 2941- 2943 Sept 2003.
[24]M. D. Plessis, E. Eksteen, A. Jenneker, E. Kriel, C. Mentoor, T. Stucky, D. v. Staden, and L. M. Division, "The effectiveness of continuous passive motion on range of motion, pain and muscle strength following rotator cuff repair a systematic review," Clinical Rehabilitation, vol. 25, pp. 291-302, 2010.
[25]D. O. Draper, EdD, ATC, and FNATA, "Ultrasound and joint mobilizations for achieving normal wrist range of motion after injury or surgery a case series," Athletic Training, vol. 45, Oct 2010.
[26]C. C. Norkin and D. J. White, Measurement of Joint Motion : A guide to Goniometry, 3 ed.: F. A. Davis company.Philadelphia, 2003.
[27]K. D. Nguyen, I.-M. Chen, Z. Luo, S. H. Yeo, and H. B.-L. Duh, "A Wearable Sensing System for Tracking and Monitoring of Functional Arm Movement," Asme Transactions on Mechatronics, vol. 16, April 2011.
[28]N. Arai and H. Shinada, "Optical linear encoder," U.S. Patent 4667099, 1987.
[29]Measurand,ShapeWrap, [Online] Available http://www.motion-capture-system.com/.
[30]G. X. Lee, K. S. Low, and T. Taher, "Unrestrained Measurement of Arm Motion Based on a Wearable Wireless Sensor Network," Transactions on Instrumentation and Measurement, vol. 59, pp. 1309-1317, May 2010.
[31]R. Zhu and Z. Zhou, "A Real_Time Articulated Human Motion Tracking Using Tri_Axis Inertial Magnetic Sensors Package," Transactions on Neural Systems and Rehabilitation Engineering, vol. 12, June 2004.
[32]H.J.Luinge and P. H. .Veltink, "Measuring orientation of human body segments using miniature gyroscopes and accelerometers," Medical & Biological Engineering & Computing vol. 43, pp. 273-282, 2005.
[33]X. Yun and E. R. Bachmann, "Design, implementation, and experimental results of a quaternion-based Kalman filter for human body motion tracking," Transactions on Rrobotics, vol. 22, pp. 1216-1227, Dec 2006.
[34]Z.-Q. Zhang and J.-K. Wu, "A Novel Hierarchical Information Fusion Method for Three-Dimensional Upper Limb Motion Estimation," Transactions on Instrumentation and Measurement, vol. 60, pp. 3709-3719, Nov 2011.
[35]D. Roetenberg, H. Luinge, and P. Slycke. (2009, April) Xsens MVN Full 6-DoF human motion tracking using miniature inertial sensors. XSENS Technologies.
[36]Z. Zhang, Z. Wu, J. Chen, and J.-K. Wu, "Ubiquitous human body motion capture using microsensors," presented at the Pervasive Computing and Communications, 2009. PerCom 2009. IEEE International Conference on, 2009.
[37]C. M. N. Brigante, N. Abbate, and A. Basile, "Towards Miniaturization of MEMS-Based," Transactions On Industrial Electronics, vol. 58, pp. 3234-3241, AUGUST 2011.
[38]Xsense, [Online] Available http://www.xsens.com/en/general/mtx?gclid=CJSg7oHHjrECFeNMpgodExUOPg.
[39]C. Jadhav, P. Nair, and V. Krovi, "Individualized interactive home-based haptic telerehabilitation," Multimedia, IEEE vol. 13, pp. 32-39, July-Sept 2006.
[40]L. Yu, L. Guo, X. Gu, J. Fu, and Q. Fang, "LVQ neural network applied for upper limb motion recognition for home-based stroke rehabilitation," presented at the Bioelectronics and Bioinformatics (ISBB), 2011 International Symposium on 2011.
[41]P. E. Taylor, G. J. M. Almeida, T. Kanade, and J. K. Hodgins, "Classifying Human Motion Quality for Knee Osteoarthritis Using Accelerometers," presented at the Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE 2010.
[42]M. Milenkovic, E. Jovanov, J. Chapman, D. Raskovic, and J. Price, "An accelerometer based physical rehabilitation system," System Theory, 2002. Proceedings of the Thirty-Fourth Southeastern Symposium on pp. 57- 60, 2002.
[43]J. Brutovsk´y and D. Nov´ak, "Low-cost motivated rehabilitation system for post-operation exercises.," Engineering in Medicine and Biology Society, 2006. EMBS '06. 28th Annual International Conference of the IEEE pp. 6663-6666, Aug. 30 - Sept. 3 2006.
[44]S. Melzi, L. Borsani, and M. Cesana, "The virtual trainer Supervising movements through a wearable wireless sensor network.," Sensor, Mesh and Ad Hoc Communications and Networks Workshops, 2009. SECON Workshops '09. 6th Annual IEEE Communications Society Conference on pp. 1-3, 22-26 June 2009.
[45]R. Wang, H. Guo, J. Xu, and W. H.Ko, "A Supplementary System Based on Wireless Accelerometer Network for Rehabilitation," Nano/Micro Engineered and Molecular Systems (NEMS), 2010 5th IEEE International Conference on pp. 1124-1127, 20-23, Jan 2010.
[46]STMicroelectronics, Doc ID 14611 Rev 7, [Online] Available http://www.st.com/internet/com/home/home.jsp
[47]EPSON, AH-6100LR, [Online] Available http://www.epson-electronics.de
[48]Wikipedia [Online] Available http://en.wikipedia.org/wiki/Main_Page.
[49]Hizook, MX-28, [Online] Available http://www.hizook.com/.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔