跳到主要內容

臺灣博碩士論文加值系統

(44.212.94.18) 您好!臺灣時間:2023/12/10 15:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳彥宏
研究生(外文):Yen-hung Chen
論文名稱:多接面堆疊式太陽能電池元件之全頻譜理論模型與計算模擬
論文名稱(外文):Mult-junction tandem solar-cells devics:Theoretical modeling, simulation, and calculation with full solar spectrum
指導教授:蔡進譯蔡進譯引用關係
學位類別:碩士
校院名稱:國立高雄大學
系所名稱:應用物理學系碩士班
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:136
中文關鍵詞:多接面堆疊式太陽能電池、計算模擬、理論模型
外文關鍵詞:multi-junction tandem solar-cell、simulation、th
相關次數:
  • 被引用被引用:0
  • 點閱點閱:164
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文由半導體基本公式推導太陽能電池模型中每一層的n-type與p-type中性區的少數載子濃度和電流密度分佈,模擬在太陽光全頻譜下照射,首先以矽為材料分析單接面太陽能電池特性,其轉換效率約20.5%。再來模擬雙接面的砷化鎵/矽堆疊式太陽電池,上層厚度約0.74µm,基板厚度約為210µm,最佳轉換效率約28.3%。而在多接面砷化鎵/矽/鍺堆疊式太陽能電池計算出,上層材料厚度約0.47µm,中層材料厚度約57.8µm,基板厚度約255µm,有最佳轉換效率約38.5%。最後再分析各種元件的特性參數,如摻雜濃度、少數載子生存期、表面復合速率等,對太陽能電池轉換效率的影響。
In this work, by using the basic equations of semiconductors, we calculate the space distribution of minority carrier density and current density in each layer quasi-neutral region of solar-cell devices with full solar spectrum. Firstly, we study the characteristics of single-junction solar cell with silicon materials 20.5% of the solar cell conversion efficiency is obtained. Secondly, double-junction GaAs/Si tandem solar cells are simulated with top layer thickness of about 0.74μm, and substrate thickness of about 210μm. These solar cells are shown to have the maximum efficiency of about 28.3%. Thirdly, calculation of triple-junction GaAs/Si/Ge tandem solar cells, with top layer thickness of about 0.47μm, the middle layer thickness of 57.8μm, and the substrate thickness of about 255μm is shown to have the best conversion efficiency of about 38.5%. Finally, various physical parameters are simulated to study their effects on the solar cells conversion efficiency. These parameters include the diffusion density, minority carrier lifetime, and surface
recombination velocity.
一、太陽能電池簡介------------------------------------ 1
1.1太陽能電池的基本結構------------------------------- 1
1.2太陽電池工作原理----------------------------------- 3
1.3太陽光的光譜照度----------------------------------- 3
1.4太陽能電池特性與效率------------------------------- 5
1.5頻譜響應------------------------------------------- 9
二、半導體基礎簡述 ------------------------------------10
2.1載子傳輸現象(carrier transport phenomena)---------- 10
2.1.1載子飄移(Carrier Drift)和移動率(mobility)-------- 10
2.1.2載子擴散(Carrier Diffusion)---------------------- 12
2.2基本方程式----------------------------------------- 13
2.2.1電流密度方程式(current density equation) ---------13
2.2.2連續方程式(continuity equation)------------------ 13
2.2.3太陽電池的邊界條件------------------------------- 15
2.3產生(Generation)、復合(Recombination)-------------- 17
三.太陽電池模型分析----------------------------------- 19
3.1 p-n二極體太陽電池模型分析------------------------- 19
3.1.1 n-type中性區的電流密度與少數載子濃度分部方程式-- 19
3.1.2 p-type中性區的電流密度與少數載子濃度分部方程式-- 24
3.2、雙接面堆疊式太陽能電池模型分析------------------- 30
3.2.1第一層n-type中性區的電流密度與少數載子濃度分部方程式------ 30
3.2.2第一層p-type中性區的電流密度與少數載子濃度分部方程式------ 34
3.2.3第二層n-type中性區的電流密度與少數載子濃度分部方程式------ 37
3.2.4第二層p-type中性區的電流密度與少數載子濃度分部方程式------ 41
3.2.5雙接面堆疊式太陽電池總電壓與總電流密度分析---------------- 45
3.3三接面堆疊式太陽能電池模型分析------------------------------ 50
3.3.1第一層n-type中性區的電流密度與少數載子濃度分部方程式------ 50
3.3.2第一層p-type中性區的電流密度與少數載子濃度分部方程式------ 54
3.3.3第二層n-type中性區的電流密度與少數載子濃度分部方程式------ 57
3.3.4第二層p-type中性區的電流密度與少數載子濃度分部方程式------ 61
3.3.5第三層n-type中性區的電流密度與少數載子濃度分部方程式------ 64
3.3.6第三層p-type中性區電流密度與少數載子濃度分部方程式-------- 67
3.3.7三接面堆疊式太陽電池總電壓與總電流密度分析---------------- 71
四、模擬結果與分析--------------------------------------------- 77
4.1單層太陽電池模擬-------------------------------------------- 77
4.1.1少數載子生存期-------------------------------------------- 77
4.1.2摻雜濃度-------------------------------------------------- 78
4.1.3表面復合速率---------------------------------------------- 79
4.2雙接面堆疊式太陽電池模擬------------------------------------ 85
4.2.1雙層太陽電池材料厚度與效率關係---------------------------- 85
4.2.2少數載子生存期-------------------------------------------- 86
4.2.3摻雜濃度-------------------------------------------------- 87
4.2.4表面復合速率---------------------------------------------- 88
4.3三接面堆疊式太陽電池模擬------------------------------------ 96
4.3.1元件厚度分析---------------------------------------------- 96
4.3.2少數載子生存期-------------------------------------------- 98
4.3.3摻雜濃度減少對轉換效率關係-------------------------------- 99
4.3.4表面復合速率對太陽電池特性影響---------------------------- 100
五、總結------------------------------------------------------- 119
參考資料------------------------------------------------------- 120
[1] 蔡進譯,超高效率太陽能電池-從愛因斯坦的光電效應談起,物理雙月刊,五期,廿七卷,2005年,10月
[2] M. P. Thekackara, The Solar Constant and Solar Spectrum Mesured from Reseach Aircraft, NASA Technical Report No. R-351, 1970.
[3] Martin A. Green, (曹昭陽 狄大衛 李秀文譯), Solar Cells Operating Principles, Technology and System Applications (太陽電池工作原理、技術與系統應用)
[4] Jenny Nelson, The Physics of Solar Cells
[5]黃惠良,蕭錫鍊,周明奇,林堅楊,江雨龍,曾百亨,李威儀,李世昌,林唯芳,太陽電池(2008).[7]~[22]
[6] 施敏,伍國珏,半導體元件物理學,第三版,2008,2009
[7] Sze S. M., Physics of Semiconductor Devices, 2nd Edition, John Wiley & Sons, New York, NY (1981).
[8] Luque A. and Hegedus S., Handbook of Photovoltaic Science and Engineering, John Wiley & Sons, England (2003).
[9] Green M., Solar Cell: Operating Principles, Technology, and System Applications, Prentice Hall, EnglewoodCliffs NJ (1982).
[10] Singh J., Physics of Semiconductor and Their Heterostructure, McGraw-Hill, New York (1993).
[11] Singh J., Electronic and Optoelectronic Properties of Semiconductor Structures,
Cambridge, New York (2003).
[12] Goetzberger A. and Hoffmann V.U., Photovolatic Solar Energy Generation, Springer, Berlin (2005).
[13] Backus C. E., Solar Cells, IEEE Press, New York (1976).
[14] Lee H, Klein M, Olson J, Hsieh K, Phys. Rev. B 53, 4015–4022 (1996).
[15] Enderlein R., and Horing J. M. N., Fundamental of Semiconductor Physics and Devices, World Scientific, Singapore (1997).
[16] Chopra K. L. and Das S. R., Thin Film Solar Cells, Plenum Press, New York (1983).
[17] Markvart T., and Castafier L., Practical Handbook of Photovoltaics: Fundamentals and Applications, Elsevier Science Ltd., Oxford (2003).
[18] Li S. S., Semiconductor Physical Electronics 2nd Edition, Springer, Berlin (2006).
Grundmann M., The Physics of Semiconductors, Springer, Berlin (2006).
[19] Snowdden C., Introduction to Semiconductor Device Modeling, World Scientific, Singapore (1986).
[20] Pankove J., Optical Processes in Semiconductors, Dover Publiccations, New York (1971).
[21] Goetzberger A., Knobloch J., and Voβ B.,Crystalline Silicon Solar Cells,John Wiley & Sons, England (1998).
[22] Neville R. C., Solar Energy Conversion: The Solar Cell, Elsevier/North-Holland Inc., New York (1978).
[23]Olson J, Gessert T, Al-Jassim M, Proc. 18th IEEE Photovoltaic Specialists Conference,552–555 (1985).
[24]Friedman D et al., Proc. 12th NREL Photovoltaic Program Review, Vol. AIP 306, 521 (1993).
[25] Madelung O (Ed), Semiconductors: Group IV Elements and III-V Compounds, Springer-Verlag, Berlin, Germany (1991).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top