跳到主要內容

臺灣博碩士論文加值系統

(3.236.23.193) 您好!臺灣時間:2021/07/26 05:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭于琦
研究生(外文):Yu-chi Cheng
論文名稱:實驗設計法應用於燃料電池電極材料之開發
論文名稱(外文):Application of Statistical Experimental Strategies to Development of Electrodes for the Fuel Cells
指導教授:劉鳳錦薛康琳薛康琳引用關係
指導教授(外文):Feng-Jiin LiuKan-Lin Hsueh
口試委員:楊乾信吳俊星洪儒熙
口試委員(外文):Chien-Hsin YangChug-Hsing WuJu-Hsi Hung
口試日期:2012-06-29
學位類別:碩士
校院名稱:國立聯合大學
系所名稱:化學工程學系碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:91
中文關鍵詞:質子交換膜燃料電池膜電極組最適化條件實驗設計直接甲醇燃料電池
外文關鍵詞:PEMFCMEAoptimum selections and manipulationsexperimental designDMFC
相關次數:
  • 被引用被引用:0
  • 點閱點閱:143
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
燃料電池之發展一直備受矚目,其種類繁多,發電效率快速,不對地球環境造成破壞。但是,其製程繁雜且變因眾多,若要找尋最佳製備條件勢必花費時間與成本,因此,期望藉由實驗設計法尋得最適化之電極材料製備條件。本文將分兩部份針對質子交換膜與直接甲醇燃料電池電極材料開發之研製作探討。
第一部分 實驗設計法應用於質子交換膜燃料電池膜電極組之製備低溫型質子交換膜燃料電池是近年來最受囑目的燃料電池。膜電極組是此類燃料電池的核心關鍵元件,其組成包括具催化性的氣體擴散層的陰極及陽極,置於陰極與陽極之間為質子傳導膜,作為固態電解質薄膜。目前陰陽極皆以白金為觸媒,電極則大都以碳為載體。
本研究主要目的在於製作觸媒層之最佳的漿料調製,採用刮刀成形法將觸媒漿料塗佈在碳紙上,比較製程不同對電池性能之影響,及探討熱壓之壓力、溫度、時間等熱壓成形操控條件,並進行膜電極組組裝成燃料電池之電池性能,作為製程改善之依據,以製作出性能良好之膜電極組。因此,本研究將導入實驗設計法,協助找出最佳製程變數,以降低成本,提高利潤。


第二部分實驗設計法應用於直接甲醇燃料電池(DMFC)之聚苯胺-聚苯乙烯苯磺酸- 雙金屬(白金-釕)觸媒修飾複合電極的製備直接甲醇燃料電池為可攜式電子產品應用的主流。因為相較於其他金屬,Pt具有較佳的催化效果,以及其在酸性環境與持續催化的過程中,穩定性良好,因此,陽、陰極使用的觸媒均為白金。然而,因觸媒毒化現象會降低觸媒的可反應面積,不利反應進行,因此可在Pt中添加釕(Ru)。
本研究主要為利用電化學方式合成具有多孔性結構、高比表面積之聚苯胺/聚苯乙烯苯磺酸複合電極,然後再沉積Pt與Ru觸媒,製作成Pt-RuO2-導電高分子電極。由於製程變數很多,所以導入實驗設計法,經由部份因子設計法(Fractional Factorial Design, FFD)、應答曲面法(Response Surface) 和中心組合設計 (Central Composite Design, CCD)三種方法,有系統研究出最佳沈積條件。

The development of Fuel cell has been highly anticipated because of a wide range of types, swift power generation efficiency and cause no damage to the environment. However, it is bound to expend large sums of time and the cost in finding the optimal preparation conditions due to the complicated process and numerous variables. Therefore, we expected to find the optimal conditions of the electrode material preparation by the experimental design method. The preparation of proton exchange membrane and direct methanol fuel cell electrode materials were explored in two parts in this paper.

Part I Application of Statistical Experimental Strategies to the Preparation of Membrane Electrode Assembly for PEMFCs
The low temperature proton exchange membrane fuel cells were most attended to fuel cells in recent years. The membrane electrode assembly is the core of key components of such fuel cells. The composition of the gas diffusion layer included cathode and anode with catalytic, the proton conducting membrane between the cathode and anode as a solid electrolyte film. Catalyst of the anode and cathode were based on platinum. Carbon were mostly as a carrier of electrode.
The purpose of this study was to produce the best pastes modulation of the catalyst layer. The catalyst slurry coated on carbon papers by scraper forming method and Comparing the effect of the different processes on battery performance and explored the control conditions of hot formings such as the hot pressing pressure, temperature, time, etc. We used the battery performance of the fuel cell assembled by membrane electrode assemblies as a basis for improvement of the process to produce a well performance of the membrane electrode assembly. Therefore, this study will be imported experimental design method to identify the best process variables in order to reduce costs and improve profits.

Part II Application of Statistical Experimental Strategies to Preparation of PANI/PSS/bimetal-Pt/Ru Catalysts Modified Electrodes for the Direct Methanol Fuel Cell (DMFC)
The direct methanol fuel cell (DMFC) is the mainstream for applications of the portable electronics. Compared to other metals, platinum (Pt) possesses a better catalytic effect and stability in the acidic environment and sustainable catalytic process. Therefore, the catalyst of the electrodes are platinum. However, catalytic poison phenomenon will reduce the reaction area of the catalyst, so we will add a ruthenium (Ru) on Pt.
The synthesis of the polyaniline (PANI)/ polystyrene sulfonic acid (PSS) composite electrode with porous structure and high specific surface area by using electrochemical methods in this paper. Then, deposited Pt and Ru catalysts into a Pt-RuO2 conducting polymer electrodes. The process contained a lot of variables, so we imported the experimental design method, worked out the best deposition conditions systematically by the fractional factorial design method (Fractional Factorial Design, FFD), response surface methodology (Response Surface) and central composite design (Central the Composite the Design CCD).

目錄
摘要 ................................................................ I
Abstract .......................................................... III
目錄 ............................................................... V
表目錄 ............................................................. IX
圖目錄 .............................................................. X
第一章 緒論........................................................... 1
1-1 燃料電池簡介 ..................................................... 1
1-2 實驗設計法簡介 ................................................... 3
1-3研究動機 ......................................................... 7
第二章 原理與文獻回顧 ................................................ 9
2-1 質子交換膜燃料電池結構與工作原理 ................................... 9
2-1-1 質子交換膜 ..................................................... 11
2-1-2 觸媒 .......................................................... 16
2-1-3 氣體擴散層 ..................................................... 19
2-1-4電極板 ......................................................... 21
2-2 直接甲醇燃料電池(DMFC)結構與工作原理 .......................... 22
2-2-1 電解質膜 ...................................................... 25
2-2-2觸媒 .......................................................... 26
2-2-3 氣體擴散層 ................................................... 28
2-3 實驗設計法 ..................................................... 29
2-3-1部分因子設計法(factorial design, FFD) ...... 30
2-3-2 反應曲面法 ................................................... 33
2-3-3 相關文獻搜尋 ................................................. 36
第三章 實驗設計法應用於質子交換膜燃料電池膜電極組之製備 .... 38
3-1 前言 ......................................................... 38
3-2 實驗部分 ...................................................... 39
3-2-1 實驗藥品 .................................................... 39
3-2-2 實驗設備 .................................................... 40
3-2-3 膜電極組製備 ................................................. 40
3-2-4 單電池性能測試 ............................................... 43
3-2-5 實驗設計法之流程 ............................................. 45
3-3 結果與討論 .................................................... 46
3-3-1部分因子實驗設計法 (Fractional Factorial Design, FFD) ......... 46
3-3-3 最大陡升法 .................................................. 52
3-3-3 中心組合設計 (Central Composite Design, CCD) ........ 54
3-3-4 等高線圖 ................................................... 56
3-3-5 最適化實驗之確認 ............................................. 57
3-3-7 結論 ....................................................... 60
第四章 實驗設計法應用於直接甲醇燃料電池(DMFC)之聚苯胺-聚苯乙烯苯磺酸- 雙金屬(白金-釕)觸媒修飾複合電極的製備 ............... 61
4-1 前言 ......................................................... 61
4-2 實驗部分 ..................................................... 62
4-2-1實驗藥品 ..................................................... 62
4-2-2 儀器設備 ................................................... 62
4-2-3複合電極之製程 ............................................... 65
4-3 結果與討論 ................................................... 68
4-3-1 實驗條件測試 ............................................... 68
4-3-2 部分因子實驗設計法 .......................................... 72
4-3-3 最大陡升法 ................................................. 76
4-3-4 中心組合設計法 .............................................. 78
4-3-5 等高線圖(Contour plot) .................................... 79
4-3-7 結論 ...................................................... 81
第五章 總結與未來展望 ............................................. 83
5-1 總結 ....................................................... 83
5-2 未來展望 ..................................................... 86
第六章 參考文獻 ................................................ 87
1. 黃鎮江,”燃料電池”,全華科技圖書股份有限公司,(2005)
2. 黎正中,“實驗設計與分析”,高立圖書有限公司,(2006).
3. 洪永杰, “質子交換膜型燃料電池膜電極組 (MEA)-專利地圖與專利分析”, 元智大學-老人福祉科技研究中心, (2010)
4. C. Y. Wen, G. W. Huang, “Application of a thermally conductive pyrolytic graphite sheet to thermal management of a PEM fuel cell”, J. Power Sources 178 (2008) 132-140
5. 洪永杰, “固態氧化物燃料電池專利檢索與分析報告”,元智大學-老人福祉科技研究中心, (2010)
6. 黃鎮江,”燃料電池”,滄海圖書股份有限公司,(2008)
7. M. Xiao, Y.Z. Meng, “Sulfonated poly(fluorenyl ether ketone nitrile) electrolyte membrane with high proton conductivity and low water uptake”, J. Power Sources 195 (2010) 97-103
8. S. Matar, A. Higier, H. Liu, “The effects of excess phosphoric acid in a Polybenzimidazole-based high temperature proton exchange membrane fuel cell”, J. Power Sources 178 (2008) 181-184
9. S. Zhang, X.Z. Yuan, J.N.C. Hin, “Effects of open-circuit operation on membrane and catalyst layer degradation in proton exchange membrane fuel cells”, Journal of Power Sources 195 (2010) 1142–1148
10. M. Sahaa, A. Gulla, S. Mukerjee, “Enhanced activity and interfacial durability study of ultra low Pt based electrocatalysts prepared by ion beam assisted deposition (IBAD) method”, Electrochimica Acta 54 (2009) 6756–6766
11. S. Martin, P.L. Garcia-Ybarra, J.L. Castillo, “Electrospray deposition of catalyst layers with ultra-low Pt loadings for PEM fuel cells cathodes”, Journal of Power Sources 195 (2010) 2443–2449
12. A.M. Chaparro,*. Gallardo, M.A. Folgado, A.J. Mart, L. Daza, “PEMFC electrode preparation by electrospray: Optimization of catalyst load and ionomer content”, Catalysis Today 143 (2009) 237–241
13. T. E. Wood , Z. Tan, “Non-precious metal oxygen reduction catalyst for PEM fuel cells based on nitroaniline precursor”, Journal of Power Sources 178 (2008) 510–516
14. J.F. Lin, J. Wertz, R. Ahmad, M. Thommes, A.M. Kannan, “Effect of carbon paper substrate of the gas diffusion layer on the performance of proton exchange membrane fuel cell”, Electrochimica Acta 55 (2010) 2746–2751
15. Chung-Jen Tseng, Shih-Kun Lo, “Effects of microstructure characteristics of gas diffusion layer and microporous layer on the performance of PEMFC”, Energy Conversion and Management 51 (2010) 677–684
16. 本間琢也,”圖解燃料電池百科” 全華科技圖書股份有限公司,(2004)
17. J. N. Tiwari, T.-M. Chen, F.-M. Pan, K.-L. Lin, “Ordered silicon nanocones as a highly efficient platinum catalyst support for direct methanol fuel cells”, J. power source, 182 (2008) 510.
18. C.C. Yang, “Synthesis and characterization of the cross-linked PVA/TiO2 composite polymer membrane for alkaline DMFC”, Journal of Membrane Science 288 (2007) 51–60
19. T. Yang, “Preliminary study of SPEEK/PVA blend membranes for DMFC applications”, i n t e r n a t i onal j o u r n a l o f hydrogen energy 33(2008) 6772-6779
20. C.C. Yang, Y. J. Lee, J. M. Yang, “Direct methanol fuel cell (DMFC) based on PVA/MMT composite polymer membranes”, Journal of Power Sources 188 (2009) 30–37
21. V. Neburchilov, H. Wang, J. Zhang, “Low Pt content Pt–Ru–Ir–Sn quaternary catalysts for anodic methanol oxidation in DMFC”, Electrochemistry Communications 9 (2007) 1788–1792
22. A. Caillard , C. Coutanceau, “Structure of Pt/C and PtRu/C catalytic layers prepared by plasma sputtering and electric performance in direct methanol fuelcells (DMFC)”, Journal of Power Sources 162 (2006) 66–73
23. T. Maiyalagan, “Silicotungstic acid stabilized Pt–Ru nanoparticles supported on carbon nanofibers electrodes for methanol oxidation”, international journal of hydrogen energy 34 (2009) 2874-2879
24. M. Shahbudin Masdar, T. Tsujiguchi, N. Nakagawa, “Mass spectroscopy for the anode gas layer in a semi-passive DMFC using porous carbon plate Part I: Relationship between the gas composition and the current density”, Journal of Power Sources 194 (2009) 610–617
25. G.G. Park, T.H. Yang, “Pore size e'ect of the DMFC catalyst supported on porous materials”, International Journal of Hydrogen Energy 28 (2003) 645-650
26. 蒙哥馬利,“實驗設計與分析”,高立圖書有限公司,(1998).
27. 奈特,“實驗設計與分析”,高立圖書有限公司,(2000).
28. 蒙哥馬利,“實驗設計與分析”,高立圖書有限公司,(2006).
29. S.L. Hung, T.C. Wen, A. Gopalan, “Application of statistical design strategies to optimize the conductivity of electrosynthesized polypyrrole”, Materials Letters 55 (2002) 165– 170
30. S. Endoo, K. Pruksathorn, P. Piumsomboon, “Identification of the key variables in membrane electrode preparation for PEM fuel cells by a factorial design”, Renewable Energy 35 (2010) 807–813
31. C.C. Hu, T.W. Tsou, “The optimization of specific capacitance of amorphous manganese oxide for electrochemical supercapacitors using experimental strategies”, Journal of Power Sources 115 (2003) 179–186
32. Kevin J. Hanley , Catherine O'Sullivan , “Application of Taguchi methods to DEM calibration of bonded agglomerates”, Powder Technology 210 (2011) 230–240
33. Walid A. Lotfy, Khaled M. Ghanem, Ehab R. El-Helow, “Citric acid production by a novel Aspergillus niger isolate: II. Optimization of process parameters through statistical experimental designs”, Bioresource Technology 98 (2007)3470-3477
34. B. Dejaegher, Y. V. Heyden, “Experimental designs and their recent advances in set-up, data interpretation, and analytical applications”, Journal of Pharmaceutical and Biomedical Analysis 56 (2011) 141-158
35. Y. R. Abdel-Fattah, H. M. Saeed, Y. M. Gohar, M. A. El-Baz, “Improved production of Pseudomonas aeruginosa uricase by optimization of process parameters through statistical experimental designs”, Process Biochemistry 40 (2005) 1707–1714
36. S. M. Rosa, M. A. Soria, C. G. Velez, M. A. Galvagno, “Improvement of a two-stage fermentation process for docosahexaenoic acid production by Aurantiochytrium limacinum SR21 applying statistical experimental designs and data analysis”, Bioresource Technology 101 (2010) 2367–2374
37. S. Matar, A. Higier, H. Liu, “The effects of excess phosphoric acid in a polybenzimidazole-based high temperature proton exchange membrane fuel cell”, Journal of Power Sources 195 (2010) 181-184
38. A.M. Chaparro, B. Gallardo, M.A. Folgado, A.J. Martin, L.Daza, “PEMFC electrode preparation by electrospray: Optimization of catalyst load and ionomer content”, Catalysis Today 143 (2009) 237-241
39. W. L. Yu, S. J. Wu, S. W. Shiah, “Parametric analysis of the proton exchange membrane fuel cell performance using design of experiments”, INTERNATION JOURNAL OF HYDROGEN ENERGY 33 (2008) 2311-2322
40. H. N. Su, S. J. Liao, T. S., H. L. Gao, “Performance of an ultra-low platinum loading membrane electrode assembly prepared by a novel catalyst-sprayed membrane technique”, Journal of Power Sources 195 (2010) 756–761
41. K. H. Kim, K. Y. Lee, “The effects of Nafion_ ionomer content in PEMFC MEAs prepared by a catalyst-coated membrane (CCM) spraying method”, international journal of hydrogen energy 35 (2010) 2119-2126
42. E. Billy, F. Maillardb, “Impact of ultra-low Pt loadings on the performance of anode/cathode in a proton-exchange membrane fuel cell”, Journal of Power Sources 195 (2010) 2737–2746
43. 余佩蓉,"質子交換膜燃料電池 (PEMFC) 膜電極組 (MEA) 製備及其對電池性能影響之研究”, 國立聯合大學碩士論文 (2009)
44. 黃怡萍, “實驗設計法應用於PANI/Pt複合電極之甲醇氧化與PANI/PSSMA/Au複合電極之維生素C氧化特性探討”,國立聯合大學碩士論文 (2009)
45. A.A. Kulikovsky, “A model for carbon and Ru corrosion due to methanol depletion in DMFC”, Electrochimica Acta 56 (2011) 9846– 9850
46. X. Chenga, C. Peng, M. You, “Characterization of catalysts and membrane in DMFC lifetime testing”, Electrochimica Acta 51 (2006) 4620–4625
47. S. Matar, H. Liu, “Effect of cathode catalyst layer thickness on methanol cross-over in a DMFC”, Electrochimica Acta 56 (2010) 600–606
48. 梨青帆, “聚苯胺/聚(苯乙烯苯磺酸)/金屬觸媒修飾複合電極之特性與甲醇催化行為探討”, 國立聯合大學碩士論文 (2007)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top