跳到主要內容

臺灣博碩士論文加值系統

(3.236.68.118) 您好!臺灣時間:2021/07/31 20:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃廣台
研究生(外文):Huang, KwangTai
論文名稱:應用ZigBee無線網路進行室內定位之研究
論文名稱(外文):The Research for Indoor Positioning Services based on ZigBee Wireless Network
指導教授:張朝旭張朝旭引用關係
指導教授(外文):Chang, ChaoHsu
口試委員:張陽郎張朝旭温敏淦
口試委員(外文):Chang,YangLangChang, ChaoHsuWen,MingGang
口試日期:2012-07-20
學位類別:碩士
校院名稱:國立聯合大學
系所名稱:資訊管理學系碩士班
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:50
中文關鍵詞:室內定位、SVM、ZigBee
外文關鍵詞:Indoor positioning, SVM, ZigBee
相關次數:
  • 被引用被引用:7
  • 點閱點閱:753
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:2
隨著科技的進步,室外定位服務如:GPS定位,已日趨成熟。而室內定位的發展,目前卻仍在研究之階段,導致許多室外定位服務無法延伸至室內來使用。同時,室內定位技術若能結合其他技術,則更能擴展其使用之範疇,如:結合生理資訊擷取技術,則可進行居家醫療照護或是居家生活型態辨識,達到無所不在的照護。此外,產品自動化分類、室內環境監測、室內災害防護以及室內救援管理,皆可因室內定位技術的進步而實現。因此,本研究於室內使用ZigBee網路,結合支援向量機(SVM, Support Vector Machine)的分類法,新提出一個以位置為基礎(Position-based)的多重模型(Multiple Models)選擇定位方法,來進行室內定位之研究;亦即依所在位置選擇適當的分類模型,來進行定位確認,其實驗結果顯示此方法可有效而準確的運用於室內定位。
With the rapid advance of technology, the outdoor positioning services such as GPS have been developed completely. However, the indoor positioning technology is still under research phase. The extended services from outdoor positioning now are unavailable in indoor environment. At the same time, the indoor positioning technology can provide many desirable services such as the monitoring of the environment, the protection of indoor accidents and the identification of indoor living style which was provided by integrating another bio-signal measuring devices. Thence, in this thesis the SVM was used to realize the indoor positioning service based on ZigBee wireless sensor network. In addition, a Multiple-Models Choosing Approach was proposed for more precised indoor positioning as well. The results have shown that this approach was efficient and feasible.
摘要.....................................................III
Abstract.................................................IV
致謝.....................................................V
目錄.....................................................VI
圖目錄...................................................VIII
表目錄...................................................IX
第一章 緒論...............................................1
1.1研究動機與研究問題......................................1
1.2論文架構...............................................3
第二章 文獻回顧與探討.......................................4
2.1 無線感測網路(WSN: Wireless Sensor Network)的特點與限制..4
2.2定位技術...............................................5
2.2.1 室外定位............................................5
2.2.2室內定位.............................................8
2.3 ZigBee網路...........................................10
2.4 SVM原理與應用.........................................13
2.5 常見的室內定位方法.....................................14
第三章 實驗工具及軟體......................................20
3.1 CC2430...............................................20
3.2 IAR整合開發環境.......................................22
3.3 pc端接收工具..........................................22
第四章 研究方法及實驗結果...................................24
4.1室內定位模型之建立......................................24
4.2實驗環境...............................................24
4.3 以SVM為基礎之定位方式..................................26
4.3.1實驗一:接收器擺放位置差異測試..........................26
4.3.2實驗二:應用SVM方法於ZigBee網路定位.....................28
4.3.3實驗三:透過隨機位置驗證訓練模組正確性...................29
4.3.4實驗四:增加特徵值是否提升正確率........................31
4.3.5實驗五:訊號強度平均化是否提升正確率.....................32
4.3.6實驗六:實際應用測試...................................33
4.3.7實驗七:穩定性測試.....................................34
4.3.8實驗八:方向性測試.....................................35
4.3.9實驗九:快速佈建實驗...................................36
4.4模型分類...............................................37
4.5多重模組定位方法........................................41
4.6多重判斷流程............................................42
4.7實驗結果...............................................44
第五章 結論及未來展望.......................................46
參考文獻..................................................47


[1] 黃種瑋,2011,基於Zigbee之即時室內定位系統開發,中興大學電機工程學系碩士論文
[2] 張又中,2010,應用ZigBee無線感測網路之定位演算,國立成功大學電信管理碩士論文
[3] 鄭琮憲,2011,ZigBee下基於接收訊號強度法實現室內即時定位系統,嶺東科技大學資訊科技應用碩士論文
[4] 蕭銘遠,2006,在Wi-Fi 環境下居家照護行動定位的建構,亞洲大學電腦與通訊學系碩士論文
[5] Ale, S.; Rai, A.; Rizvi, S.S. Riasat, A. ” A New Methodology for Self Localization in Wireless Sensor Networks”, Multitopic Conference, 2008. INMIC 2008. IEEE International pp.260-265 2008.
[6] A. A. Kannan, B. Vucetic, G. Mao, “Simulated annealing based localization in wireless sensor network.”, in The 30th IEEE Conference
[7] An-ke Xue, Rui-rong Wang, Jian-zhong Wang, Zuo-yi Zhang, “A New Solutions for Staff Localization in Chemical Plant”, System Science and Engineering (ICSSE), 2011 International Conference on, 8-10 ,pp. 503 – 508,June 2011
[8] Balogh, G., Ledeczi, A., Maroti, M., and Simon, “Time of arrival data fusion for source localization”. In Proceedings of The WICON Workshop on Information Fusion and Dissemination in Wireless Sensor Networks, Budapest, Hungary, 2005.
[9] Binghao Li, Dempster, A.G, Gallagher, T.J, “A sector-based campuswide indoor positioning system.” IPIN, 2010, pp.1-8.
[10] Bruzzone, L., Melgani, F., “Classification of Hyperspectral Remote Sensing Images With Support Vector Machines”, Geoscience and Remote Sensing, IEEE Transactions on , Volume : 42 , Issue:8 ,pp. 1778 – 1790, Aug. 2004.
[11] Changlin Ma, Cong Jin, Jinghua Wang, Junmin Ye, Qingguo Zhang, Wei Zhang, “Genetic Algorithm based Wireless Sensor Network Localization”, Natural Computation, 2008. ICNC '08. Fourth International Conference on, 18-20,Volume: 1,pp.608 – 613,Oct. 2008
[12] Chapelle, O., Haffner, P., Vapnik, V.N., ”Support Vector Machines for Histogram-Based Image Classification”, IEEE Transactions on Volume: 10 pp.1055-1064 1999.
[13] C. Gavrovski, M. Srbinovska, V. Dimcev, “Localization estimation system using measurement of RSSI based on ZigBee standard.”, ELECTRONICS’ 2008, pp. 46-47, Sozopol, Bulgaria, Sep. 2008.
[14] Dalal, N., Triggs, B., “Histograms of Oriented Gradients for Human Detection”, Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, 25-25,Vol.1, pp. 886 - 893, June 2005.
[15] D. B. Faria and D. R. Cheriton, “Detecting Identity-based Attacks in Wireless Networks using Signalprints”, in WiSe ’06: Proceedings of the 5th ACM workshop on Wireless Security, Sep. 2006, pp. 43–52
[16] D. Estrin, D. Culler, G. Sukhatme. and K. Pister, “Connecting the physical world with pervasive networks”. In IEEE Pervasive Computing, pages 59 – 69, 2002.
[17] G.J. Pottie and W.J. Kaiser., “Wireless integrated network sensors.” In Communications of the ACM, volume 43, pages51–58, 2000.
[18] Gollan, N., Schmitt, J.B., Martinovic, I., “Firewalling wireless sensor networks_ Security by wireless”, Local Computer Networks, 2008. 33rd IEEE Conference on, 14-17, pp.770 – 777, Oct. 2008
[19] Gottesheim, W., J.,Beer, W., Kurschl, W., Mitsch, S., Prokop, R., Schonbock, “A Two-Layered Deployment Scheme for Wireless Sensor Network based Location Tracking”,Information Technology: New Generations, 2008. ITNG 2008. Fifth International Conference on, 7-9, pp.726 – 730,April 2008
[20] Gwei-Tai Jen, Tai-Wei Lu, Wen-Hsing Kuo, Yun-Shen Chen, “An Intelligent Positioning Approach: RSSI-Based Indoor And Outdoor Localization Scheme In ZIGBEE Networks”, Machine Learning and Cybernetics (ICMLC), 2010 International Conference on, 11-14,Volume: 6,pp.2754–2759.July 2010
[21] H. Liu, H. Drabi, and P. Banerjee, “Survey of wireless indoor positioning techniques and systems.” IEEE Trans. System man, Cybernetics. vol. 37, No.6, Nov 2007, pp.1067–1080.
[22] Hui Xu, Peng Cui, Lifeng Sun, Shiqiang Yang, Xifeng Ding,” A Cascade SVM Approach for Head-Shoulder Detection Using Histograms of Oriented Gradients”, Circuits and Systems, 2009. ISCAS 2009. pp.1791-1794.
[23] J. P. Makela, K. Pahlavan, X. Li, “Indoor geolocation science and technology” , IEEE Commun. Mag., vol. 40, no. 2, pp. 112-118, Feb. 2002.
[24] http://www.iar.com/

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top