跳到主要內容

臺灣博碩士論文加值系統

(3.235.185.78) 您好!臺灣時間:2021/07/27 18:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蕭瑋岷
研究生(外文):Hsiao, Wei-Min
論文名稱:採用邊界條件工作之微型市電併聯變流器之研製
論文名稱(外文):Design and Implementation of Grid-Tied Micro Inverter with Boundary Conduction Mode
指導教授:江炫樟江炫樟引用關係
指導教授(外文):Chiang, Hsuang-Chang
口試委員:馬肇聰賴致廷
口試委員(外文):Ma, Tsao-TsungLai, Jus-Tin
口試日期:2012-07-25
學位類別:碩士
校院名稱:國立聯合大學
系所名稱:電機工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:100
中文關鍵詞:邊界導通模式變頻式電壓模式控制返馳式轉換器極性變換器
外文關鍵詞:boundary conduction modevariable frequency voltage mode controlflyback converterpolarity inversion circuit
相關次數:
  • 被引用被引用:4
  • 點閱點閱:687
  • 評分評分:
  • 下載下載:254
  • 收藏至我的研究室書目清單書目收藏:1
國際環保壓力以及未來石油及其他傳統能源將逐漸短缺,都使得再生能源之發展益發顯現其重要性與迫切性。太陽能由於取之不絕且用之不盡,為本世紀最被看好之再生能源之一,如何高效率利用太陽能發電並將電力饋入市電已成為目前此方面研究一重要課題。有別於傳統採用較大容量太陽能模組陣列發電方式,本論文研製一單相小型太陽能市電併聯變流器,可將單一太陽能模組產生之電力直接饋入市電。所提變流器乃由一電流源輸出之返馳式轉換器與一極性變換器所組成,本論文提出變頻式電壓模式控制使返馳式轉換器操作在邊界導通模式,並可控制輸出電流以形成一低失真之正弦波,達到高功因饋入市電之目的。本論文分析所提電路之小信號模型並據以提出控制器之量化設計方法,最後實際製作一120W系統,由一些模擬與實驗數據來驗證所提方法之可行性。
Increasing pressure of the environmental protection and anticipative shortage of the conventional energy has called for the development of the regenerative energy. The solar power due to its inexhaustibility is the most important energy in the foreseeable future. How to utilize the solar energy efficiently and feed it to the grid is an important research topic currently. Not as the conventional large scale PV generation system with a large amoung of PV modules in series, this thesis presents the micro inverter which can feed the PV module power to the grid directly. The proposed inverter is composed of a flyback converter with current source output and a polarity inversion circuit. The variable frequency voltage mode control method are presented to operate the flyback converter in the boundary conduction mode (BCM) and control the output current of the inverter to be sinusoidal and in phase with the grid voltage. Modeling of the inverter and quantitative controller design of the variable frequency voltage mode control method is presented. A 120W experimental system with PV module for generating power is built. The effectiveness of the proposed method is confirmed with some simulation and measured results.
摘要 I
Abstract II
目錄 III
圖目錄 V
表目錄 X
第一章 緒論 1
1.1 研究背景 1
1.2 研究目的 3
1.3 文獻探討 5
1.4 論文架構 9
第二章 微型變流器電路架構探討 10
2.1 各式變流器架構探討 10
2.2 高升壓比返馳式變流器介紹 19
2.3 升壓型返馳式變流器介紹 20
2.4 所提BCM之返馳式變流器介紹 22
第三章 操作於BCM之返馳式市電併聯變流器之研製 25
3.1 返馳式變流器之工作模式 25
3.2 返馳式變流器工作原理分析 30
3.2.1 BCM返馳式轉換器工作原理分析 30
3.2.2 BCM返馳式變流器之工作原理分析 35
3.3 返馳式變流器於BCM操作之控制方法 40
3.4 電壓模式控制BCM返馳式變流器之設計 44
3.5 電路參數設計 49
3.6 模擬與實驗結果 51
第四章 市電併聯軟體規畫與系統整合 58
4.1 簡介 58
4.2 系統軟體規劃與設計 59
4.2.1 DSPIC33FJ16GS504簡介 59
4.2.2 DSPIC33FJ16GS504程式流程圖 65
4.3 太陽能最大功率追蹤方法 67
4.4 取樣電路之製作 76
4.5 系統整合之實驗結果 79
第五章 結論與未來研究方向 83
5.1 結論 83
5.2 未來研究方向 84
參考文獻 86


圖目錄
圖1.1未來能源使用分布圖[3] 2
圖1.2再生能源發電系統分類 5
圖1.3市電併聯太陽能光伏系統轉換器架構 8
圖1.4部分遮蔽對多組光伏模組串聯發電之影響[14] 8
圖1.5微型變流器架構 8
圖2.1雙級式變流器電路架構 11
圖2.2兩級式之電流源輸出DC/DC轉換器串接線頻切換變流器架構 11
圖2.3 DC/DC轉換器採用返馳式之微型變流器電路架構 12
圖2.4返馳式轉換器二次側採用中心抽頭變流器之電路架構 13
圖2.5返馳式轉換器二次側採用全橋式電晶體變流器之電路架構 14
圖2.6返馳式轉換器二次側採用全橋式閘流體變流器之電路架構 14
圖2.7返馳式轉換器採用電容箝位及二次漣波解耦之電路架構 14
圖2.8返馳式轉換器採用二開關式及同步飛輪之電路架構 15
圖2.9全橋式轉換器二次側採用同步開關之電路架構 15
圖2.10 DC/DC轉換器採用半橋串聯諧振式電路架構之微型變流器 16
圖2.11 DC/DC轉換器採用推挽式(push-pull)電路架構之微型變流器 16
圖2.12 DC/DC轉換器採用SEPIC電路架構之微型變流器 16
圖2.13 DC/DC轉換器採用變頻ZCS返馳式電路架構之微型變流器 17
圖2.14傳統之返馳式轉換器 17
圖2.15 加入RCD緩震電路之返馳式轉換器 18
圖2.16加入主動箝位電路之返馳式轉換器 19
圖2.17高升壓比返馳式變流器 20
圖2.18升壓型返馳式變流器 21
圖2.19單級PFC返馳式轉換器 23
圖2.20 BCM返馳式變流器 24
圖3.1返馳式變流器架構 26
圖3.2返馳式變流器CCM控制架構 27
圖3.3 CCM模式下之開關及二極體電流波形 27
圖3.4返馳式變流器DCM控制架構 28
圖3.5 DCM模式下之開關及二極體電流波形 28
圖3.6返馳式變流器BCM控制架構 29
圖3.7 BCM模式下之開關及二極體電流波形 29
圖3.8 RCD緩震電路之返馳式轉換器 30
圖3.9 BCM下緩震電路返馳式轉換器之主要電流波形 31
圖3.10開關Q1導通時之等效電路 32
圖3.11開關Q1截止時之等效電路 33
圖3.12電壓突波表示圖 34
圖3.13 BCM返馳式變流器控制架構 36
圖3.14 BCM返馳式轉換器之工作波形 37
圖3.15 BCM返馳式轉換器之輸入、輸出電流波形 37
圖3.16 BCM返馳式變流器之輸入、輸出電流波形 38
圖3.17 BCM返馳式變流器之切換波形一 38
圖3.18 BCM返馳式變流器之切換波形二 39
圖3.19 BCM之開關、二極體和輸出電流波形 40
圖3.20變頻式峰值電流控制法 41
圖3.21變頻式峰值電流控制法之波形 42
圖3.22變頻式電壓模式控制法 43
圖3.23變頻式電壓模式控制法之波形 43
圖3.24返馳式轉換器小信號輸入等效電路圖 45
圖3.25 PV電壓控制迴路小信號方塊圖 46
圖3.26 PV電壓控制迴路波德圖 47
圖3.27 PV電壓控制迴路採用前向控制 47
圖3.28加入前向控制之PV電壓控制迴路波德圖 48
圖3.29以電流控制器取代開關電流命令計算之方法 49
圖3.30電壓模式控制BCM返馳式變流器之PSIM模擬電路 53
圖3.31電壓模式控制BCM返馳式變流器之PSIM模擬波形 54
圖3.32 實作電路規劃方式 55
圖3.33 BCM PFC控制IC (NCP1608) 56
圖3.34實作電路 56
圖3.35實作波形 57
圖4.1主電路與控制電路方塊圖 58
圖4.2 IC包裝與腳位功能 60
圖4.3 DSP運算方塊圖 62
圖4.4類比訊號轉換器模組之硬體結構方塊圖 64
圖4.5程式流程圖 66
圖4.6太陽能電池模組之等效電路 67
圖4.7不同照度、固定環境溫度(25℃)下之特性曲線:(a) I-V特性曲
線;(b) P-V特性曲線 71
圖4.8不同環境溫度、固定照度(1.0kw/m2)下之特性曲線: 72
圖4.9擾動觀察法之控制流程圖 74
圖4.10擾動觀察法之控制示意圖 75
圖4.11輸入電壓感測電路 76
圖4.12輸入電流感測電路 77
圖4.13輸出電流感測電路 78
圖4.14市電同步感測電路 79
圖4.15 PV系統之實際電路架構 80
圖4.16 PV Module Emulator 功率與電壓曲線圖 80
圖4.17太陽能最大功率點追蹤波形圖 81
圖4.18饋入市電功率60W之波形 82
圖4.19饋入市電功率120W之波形 82


表目錄
表2.1單級返馳式PFC電路與返馳式變流器之比較 23
表4.1 DSPIC33FJ16GS504規格表 61
表4.2 BP SX 150 太陽能電池規格表[41] 70
表4.3 PV Module Emulator 參數表 80


[1] 施顏祥,311福島核災周年對台灣能源發展的省思,2012年3 月 5日。
[2] 經濟部,綠色能源產業旭升方案-行動計畫,2009 年11 月。
[3] M. Rogol, S. Doi and Anthony Wilkinson, “Sun Screen Investment Opportunities in Solar Power,” Solar Power Sector Outlook, CLSA Asia-Pacific Markets, 2004.
[4] ‘Renewable Energy Made in Germany’。http://www.german-renewable-energy.com
[5] German Advisory Council on Global Change, 2003.
[6] ‘Technology Roadmap - Wind energy’, International Energy Agency (IEA) , pp14,http://www.iea.org/papers/2009/Wind_Roadmap.pdf
[7] 2012年能源產業技術白皮書,經濟部能源局。
[8] 國家政策研究基金會,再生能源發展條例,民國98年6月。
[9] 台灣綠色生產力基金會,節能績效保證專案示範推廣補助計畫,民國101年1月。
[10] 原創能源專訪-微型逆變器提高了太陽能發電技術效率。http://www.energytrend.com.tw/iEnergy_20111028
[11] F. Giraud and Z. M. Salameh, “Steady-State Performance of a Grid-Connected Rooftop Hybrid Wind-Photovoltaic Power System with Battery Storage,” IEEE Transactions on Energy Conversion, Vol. 16, pp. 1-7, 2001.
[12] M. H. Nehrir, B. J. LaMeres, G. Venkataramanan, V. Gerez and L. A. Alvarado,“Performance Evaluation of Stand-Alone Wind Photovoltaic Genera System,” IEEE Power Engineering Society Summer Meeting, Vol. 1, pp. 555-559, 1999.
[13] S. J. Park, B. B. Kang, J. P. Yoon, I. S. Cha and J. Y. Lim, “A Study on the Stand-Alone Operating or Photovoltaic/Wind Power Hybrid Generation System, ”IEEE PESC'04, Vol. 3, pp. 2095-2099, 2004.
[14] S. B. Kjaer, J. K. Pedersen, and F. Blaabjerg, “A review of single-phase grid-connected inverters for photovoltaic modules,” IEEE Trans. on Industry Applications, Vol. 41, No. 5, pp. 1292-1306, 2005.
[15] M. Calais, J. Myrzik, T. Spooner, and V. G. Agelidis, “Inverters for single-phase grid connected photovoltaic systems—An overview,” in Proc. IEEE PESC’02, vol. 2, pp. 1995–2000,2002.
[16] M. Meinhardt and G. Cramer, “Past, present and future of grid connected photovoltaic-and hybrid-power-systems,” in Proc. IEEE-PES Summer Meeting,115 vol. 2, pp. 1283–1288, 2000.
[17] Y. H. Ji, D. Y. Jung, J. H. Kim, C. Y. Won, and D. S. Oh, “Dual mode switching strategy of flyback inverter for photovoltaic AC modules,” in International Power Electronics Conference, pp. 2924-2929, 2010.
[18] Y. H. Kim, J. G. Kim, Y. H. Ji, C. Y. Won and T. W. Lee, “Flyback inverter using voltage sensorless MPPT for AC module systems,” in International Power Electronics Conference, pp. 948-953, 2010.
[19] J. Y. Gu, H. F. Gu, G. C Chen and Y. Xing, “Research on photovoltaic grid-connected inverter based on soft-switching interleaved flyback converter,” in 5th IEEE Conference on Industrial Electronics and Applications (ICIEA), pp. 1209-1214, 2010.
[20] A. Chen, S. Daming, D. Chunshui, C. Zhang, “High-frequency DC link flyback single phase inverter for grid-connected photovoltaic system,” IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG), pp. 364-367, 2010.
[21] Y. Li, and R. Oruganti, “A low cost high efficiency inverter for photovoltaic AC module application,” in 35th IEEE Photovoltaic Specialists Conference (PVSC), pp. 2853-2858, 2010.
[22] D. C. Martins and R. Demonti, “Grid connected PV system using two energy processing stages,” in Conf. Rec. 29th IEEE Photovoltaic Specialists Conf., pp. 1649–1652, 2002.
[23] S. Mekhilef, N. A. Rahim, and A. M. Omar, “A new solar energy conversion scheme implemented using grid-tied single phase inverter,” in Proc. IEEE TENCON’00, vol. 3, pp. 524–527, 2000.
[24] H. Hu, S. Harb, N. Kutkut, I. Batarseh and Z. J. Shen, “Power decoupling techniques for micro-inverters in PV systems-a review,” in IEEE Energy Conversion Congress and Energy Conversion Congress and Exposition (ECCE), pp. 3235-3240, 2010.
[25] S. B. Kjaer and F. Blaabjerg, “Design optimization of a single phase inverter for photovoltaic applications,” in Proc. IEEE PESC’03, vol. 3, pp. 1183–1190, 2003.
[26] M. Nagao and K. Harada, “Power flow of photovoltaic system using buck-boost PWM power inverter,” in Proc. PEDS’97, vol. 1, pp. 144–149, 1997.
[27] C. Rodriguez, and G. A. J. Amaratunga, “Long-Lifetime Power Inverter for Photovoltaic AC Modules,” IEEE Trans. On Industrial Electronics, Vol. 55, No. 7. pp. 2593-2601, 2008.
[28] S. B. Kjaer, “Design and control of an inverter for photovoltaic applications,” Ph.D.dissertation, Inst. Energy Technol., Aalborg University, Aalborg East, Denmark, 2005.
[29] G.H. Tan, J.Z. Wang and Y.C. Ji, “Soft-switching flyback inverter with enhanced power decoupling for photovoltaic applications,” IET Electr. Power Appl., Vol. 1, No. 2, pp. 264-274, 2007.
[30] F. T. Chen, F. Rustom, K. B. Issa, “Pulse frequency modulation with soft-switching flyback single-stage inverter”, in IEEE INTELEC, pp. 1-6, 2010.
[31] B. R. Lin, H. K. Chiang, K. C. Chen and D. Wang, “Analysis, Design and Implementation of An Active Clamp Flyback Converter,” IEEE PEDS'05, Vol. 1, pp. 424-429, 2006.
[32] R. Watson, F . C . Lee and G . C . Hua, “Utilization of An Active-Clamp Circuit to Achieve Soft Switching in Flyback Converters,” IEEE Transactions on Power Electronics, Vol. 11, pp. 162-169, 2006.
[33] Q. Zhao, “Performance Improvement of Power Conversion by Utilizing Coupled Inductors,” Virginia Polytechnic Institute and State University of Doctor of Philosophy in Electrical Engineering, February 03, 2003.
[34] Q. Zhao and F. C. Lee, “High-efficiency, High Step-up DC-DC Converters,” IEEE Transactions on Power Electronics, Vol. 18, pp. 65-73, 2003.
[35] Q. Zhao and F. C. Lee, “High Performance Coupled-Inductor DC-DC Converters,” IEEE APEC'03, Vol. 1, pp. 109-113, 2003.
[36] K. C. Tseng and T. J. Liang, “Novel High-efficiency Step-up Converter,” IEE Proceedings of Electric Power Applications, Vol. 151, pp. 182-190, 2004.
[37] T. J. Liang and K. C. Tseng, “Analysis of Integrated Boost-Flyback Step-up Converter,” IEE Proceedings of Electric Power Applications, Vol. 152, pp. 217-225, 2005.
[38] 曾百由,dsPIC數位訊號控制器原理與應用,宏友圖書開發股份有限公司,民國九十四年。
[39] 哈佛結構。 http://en.wikipedia.org/wiki/Harvard_architecture
[40] E. Ortjohann1, O. Omari, M. Lingemann, A. Mohd, N. Hamsic, W. Sinsukthavorn and D. Morton, “An online control strategy for a modular dc coupled hybrid power system,” European Conference on Power Electronics and Applications, Sept. 2-5, pp. 1-10,2007.
[41] J. M. Carrasco, L. G. Franquelo, J. T. Bialasiewicz, E. Galvan, R. C. Portillo, M.A.M. Prats, J. I. Leon and N. Moreno-Alfonso, “Power-Electronic Systems for the Grid Integration of Renewable Energy Sources: A Survey,” IEEE Transactions on Industrial Electronics, Vol. 53, No. 4, pp. 1002-1016, August 2006.
[42] N. Khaehintung, K Pramotung, and P. Sirisuk, “RISC Microcontroller Built-in Fuzzy Logiccontroller for Maximum Power Point Tracking in Solar-Powered for Battery Charger,” IEEE TENCON' 04, Vol. D ,pp.637-640, 2004.
[43] F. Valenciaga and P. F. Puleston, “Supervisor Control for a Stand-alone Hybrid Generation System Using Wind and Photovoltaic Energy,” IEEE Trans. on Energy Conversion, Vol. 20, No. 2, pp.398-405, 2005.
[44] 華志強、林忠榮,“太陽電池最大功率追蹤轉換器之研製”,電力電子期刊,30期,1995。
[45] 李正勳,“小型太陽光電能能量轉換系統之研製”,國立中山大學電機工程學系,碩士論文,民國九十一年六月。
[46] Z. Salameh, F. Dagher, and W. A. Lynch, “Step-down Maximum Power Point Tracker for Photovoltaic System,” Solar Energy, Vol.46, No.1, pp.278-282, 1991.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top