(3.232.129.123) 您好!臺灣時間:2021/03/05 23:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳彥伶
研究生(外文):Chen, Yen Ling
論文名稱:氨裂解產氫之填充床反應器性能研究
論文名稱(外文):Performance Study Of Hydrogen Production From Ammonia Decomposition In A Packed-bed Reactor
指導教授:郭文旭
指導教授(外文):Kuo, Wen Shiuh
口試委員:陳炎洲簡瑞與
口試日期:100/1/6
學位類別:碩士
校院名稱:國立聯合大學
系所名稱:環境與安全衛生工程學系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:83
中文關鍵詞:促進劑觸媒氨裂解產氫
相關次數:
  • 被引用被引用:2
  • 點閱點閱:376
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:0
燃料電池可將化學能直接轉換成電能,能量轉換效率高(40-60%),是新型能源開發的重點之一。其中質子交換膜燃料電池主要發展於攜帶式電力的應用,因質子交換膜燃料電池電力密度高,而唯一要克服的問題是攜帶式的氫氣來源。使用現場反應產氫的方式可克服氫氣攜帶技術的限制,故本研究以氨做為產氫的來源,而氨裂解產氫之反應溫度通常偏高,約 400-650 °C,添加促進劑有助於提高釕(Ru)觸媒性能及降低反應溫度。
本研究主要探討釕觸媒中添加銫(Cs)促進劑比例對氨氣轉化率與
氫氣產率之影響。此外為瞭解氨裂解反應機制,取樣反應後的觸媒以粒徑分析儀、掃描式電子顯微鏡(SEM)/能量散佈光譜儀(EDS)以及X光繞射分析儀(XRD)等進行材料特性分析。結果顯示,當 Cs 促進劑添加比例增加時,轉化率與氫氣產率會隨之增加,促進劑添加 Cs/Ru 莫耳比為 4.5 時,氨氣轉化率與氫氣產率達最高值。當 Cs/Ru 莫耳比大於 5.5 後,氨氣轉化率則呈現下降趨勢。添加於觸媒的 Cs/Ru 莫耳比為 4.5,氨氣流量為 3 mL/min,反應溫度高於 350 °C 時,氨氣轉化率將近 100%。雖然氨氣轉化率隨氨氣入口流量增加而降低,氨氣轉化率也隨反應溫度降低而減少,但在流量為 9 mL/min 及 350 °C 時,氨氣轉化率仍超過 80%,表示觸媒添加一定比例的促進劑時,可使得觸媒在低溫條件下有良好的產氫效率。
由XRD分析結果顯示,促進劑(Cs)、觸媒(Ru)與載體碳(C)之間並未產生其他化合物,因此推測造成氨轉化率下降原因,可能是促進劑添加過多,造成促進劑圍繞觸媒的量增加,因此銫促進劑覆蓋住釕金屬與氨氣接觸的活性表面,使接觸面積減少。
上述研究結果顯示,於氨裂解反應器使用釕觸媒,並添加適當比例之銫促進劑,於較低溫條件下能明顯提升產氫效率。
The effect of the molar ratio of promoter-cesium(Cs)/catalyst-ruthenium (Ru), the flow rate of NH 3 and the temperature of reaction on the decomposition efficiency of ammonia in terms of the production efficiency of hydrogen was investigated in this study. In addition, the used Cs/Ru catalyst was sampled and characterized by a particle size analyzer, scanning electron microscopy (SEM)/energy dispersive spectrometer (EDS) and X-ray diffraction (XRD) in order to realize the mechanism of NH3 decomposition reaction.
The results showed that the decomposition efficiency of NH3 would increase with increasing the molar ratio of Cs/Ru, decreasing the flow rate of NH3 and increasing the temperature of reaction. The decomposition of NH3 would reach the highest efficiency, almost 100%, at the condition of a Cs/Ru molar ratio of 4.5, a NH3 flow rate of 3 mL/min and a reaction temperature exceeding 350 °C. The decomposition efficiency of NH3 was still higher than 80% at the condition of a NH 3 flow rate of 9 mL/min and a
reaction temperature of 350 °C, indicating the effective promoting effect of Cs/Ru catalyst on the decomposition of NH 3 . However, as the Cs/Ru molar ratio was higher than 5.5, the production efficiency of H 2 was declined to a value which was lower than that of the condition with Ru only.
In addition, the results of XRD analysis showed that the used Cs/Ru catalyst did not generate other defined crystals with the carrier – carbon in reaction channel. Also, it was found in the analysis of SEM/EDS that the Cs atoms were not bonded with Ru atoms, implying the uniform distribution of Cs atoms surrounding Ru atoms at the condition of a Cs/Ru molar ratio of 4.5. Nevertheless, at the condition of a higher Cs/Ru molar ratio, the surface of Ru atoms may be covered by Cs atoms, leading to less active sites of Ru catalyst for the decomposition of NH3.
On the basis of the results obtained in this study, it was revealed that the decomposition efficiency of ammonia in terms of the production efficiency of hydrogen would be significantly promoted by adding an appropriate molar ratio of Cs/Ru in reactor, even at a lower reaction temperature and a higher flow rate of NH3.
目錄
摘要
Abstract
目錄
圖目錄
表目錄
第一章 前言
1.1 研究背景
1.2 研究動機與目的
第二章 文獻回顧
2.1 氫重組技術簡介
2.2 以氨(NH3)作為氫載體
2.2.1 氨氣特性
2.2.2 氨裂解反應
2.3 氨裂解用觸媒
2.3.1 觸媒
2.3.2 載體
2.3.3 促進劑
2.4 影響因子
2.4.1 入口流量
2.4.2 反應溫度
第三章 實驗材料與方法
3.1 研究流程
3.2 氨裂解反應產氫系統
3.2.1 實驗系統
3.2.2 氫氣檢量線
3.2.3 氨氣轉化率與氫氣產率計算
3.3.1 Cs/Ru 莫耳比計算
3.3.2 促進劑添加流程
3.3.3 氨裂解反應程序
3.4 觸媒材料特性分析
3.4.1 粒徑分析
3.4.2 表面形態之觀察
3.4.3 元素分佈分析
3.4.4 表面結晶分析
第四章 結果與討論
4.1 氫氣檢量線
4.2 觸媒添加促進劑之前處理溫度
464.3 觸媒與促進劑之調配比例
4.4 觸媒特性分析
4.4.1 粒徑分析
4.4.2 觸媒表面型態觀察
4.4.4 觸媒之晶相分析
4.5 反應器之反應溫度
4.6 進入反應器之氨氣入口流量
4.7 反應器中觸媒填充量(loading)
4.8 不同反應溫度之反應速率比較
第五章 結論與建議
參考文獻
附錄
78
參考文獻
1. 毛宗強. (2008) 氫能 - 21 世紀的綠色能源, 新文京.
2. Karim A., Bravo, J., Gorm D., Conant T., and Datye A. (2005).
Comparison of wall-coated and packed-bed reactors for steam reforming
of methanol, Catalysis Today 110, 86-91.
3. Lee M. T., Greif R., Grigoropoulos C. P., Park H. G., and Hsu F. K.
(2007). Transport in packed-bed and wall-coated steam-methanol
reformers, Journal of Power Sources 166, 194-201.
4. Ganley J. C., Riechmann K. L., Seebauer E. G., and Masel R. I. (2004).
Porous anodic alumina optimized as a catalyst support for microreactors,
Journal of Catalysis 227, 26-32.
5. Ganley J. C., Seebauer E. G., and Masel R. I. (2004). Development of a
microreactor for the production of hydrogen from ammonia, Journal of
Power Sources 137, 53-61.
6. Stuart H. C. (1935). Method for the production of nitrogen and hydrogen
by the thermal decomposition of ammonia, ICI LTD, United States.
7. Zamfirescu C., and Dincer I. (2009). Ammonia as a green fuel and
hydrogen source for vehicular applications, Fuel Processing Technology
90, 729-737.
8. 倪平, 储伟, 王立楠, 與 张涛. (2006). 氨催化分解制备无 COx 的氢
气催化剂研究进展, 化工进展 5.
9. Klerke A., Christensen C. H., Nrskov J. K., and Vegge T. (2008).
Ammonia for hydrogen storage: Challenges and opportunities, Journal of
Materials Chemistry 18, 2304-2310.
10. Sorensen R. Z., Nielsen L. J. E., Jensen S., Hansen O., Johannessen T., 79
Quaade U., and Christensen C. H. (2005). Catalytic ammonia
decomposition: Miniaturized production of COx-free hydrogen for fuel
cells, Catalysis Communications 6, 229-232.
11. Wang S. J., Yin S. F., Li L., Xu B. Q., Ng C. F., and Au C. T. (2004).
Investigation on modification of Ru/CNTs catalyst for the generation of
COx-free hydrogen from ammonia, Applied Catalysis B: Environmental
52, 287-299.
12. Yin S. F., Xu B. Q., Wang S. J., Ng C. F., and Au C. T. (2004).
Magnesia-carbon nanotubes (MgO-CNTs) nanocomposite: Novel support
of Ru catalyst for the generation of COx-free hydrogen from ammonia,
Catalysis Letters 96, 113-116.
13. Yin S. F., Xu B. Q., Zhou X. P., and Au C. T. (2004). A mini-review on
ammonia decomposition catalysts for on-site generation of hydrogen for
fuel cell applications, Applied Catalysis A: General 277, 1-9.
14. Yin S. F., Xu B. Q., Zhu W. X., Ng C. F., Zhou X. P., and Au C. T. (2004).
Carbon nanotubes-supported Ru catalyst for the generation of COx-free
hydrogen from ammonia, Catalysis Today 93-95, 27-38.
15. Yin S. F., Xu B. Q., Ng C. F., and Au C. T. (2004). Nano Ru/CNTs: A
highly active and stable catalyst for the generation of COx-free hydrogen
in ammonia decomposition, Applied Catalysis B: Environmental 48,
237-241.
16. 段鏡 (1971). 化學化工藥物大辭典 人文出版社.
17. WikiMedia. (2009). Ammonia, http://en.wikipedia.org/wiki/Ammonia
18. Bradford M. C. J., Fanning P. E., and Vannice M. A. (1997). Kinetics of
NH 3 decomposition over well dispersed Ru, Journal of Catalysis 172,
479-484.
19. Chellappa A. S., Fischer C. M., and Thomson W. J. (2002). Ammonia
decomposition kinetics over Ni-Pt/Al 2 O 3 for PEM fuel cell applications,
Applied Catalysis A: General 227, 231-240.
20. Shioya Y., and Miyaki Y. (2009). Ammonia Decomposition Catalyst and 80
Process for Decomposition of Ammonia Using the Catalyst, Sued-Chemie
Catalysts Japan, INC. TOKYO, JP.
21. Stolbov S., and Rahman T. S. (2005). First-principles study of some
factors controlling the rate of ammonia decomposition on Ni and Pd
surfaces, The Journal of chemical physics 123, 204716.
22. Zheng W. Q., Zhang J., Xu H. Y., and Li W. Z. (2007). NH 3
decomposition kinetics on supported Ru clusters: Morphology and
particle size effect, Catalysis Letters 119, 311-318.
23. Krekelberg W. P., Greeley J., and Mavrikakis M. (2004). Atomic and
molecular adsorption on Ir(111), Journal of Physical Chemistry B 108,
987-994.
24. Boisen A., Dahl S., Nørskov J. K., and Christensen C. H. (2005). Why the
optimal ammonia synthesis catalyst is not the optimal ammonia
decomposition catalyst, Journal of Catalysis 230, 309-312.
25. Chen J., Zhu Z. H., Wang S., Ma Q., Rudolph V., and Lu G. Q. (2010).
Effects of nitrogen doping on the structure of carbon nanotubes (CNTs)
and activity of Ru/CNTs in ammonia decomposition, Chemical
Engineering Journal 156, 404-410.
26. Duan X., Zhou J., Qian G., Li P., Zhou X., and Chen D. (2010). Carbon
Nanofiber-Supported Ru Catalysts for Hydrogen Evolution by Ammonia
Decomposition, Chinese Journal of Catalysis 31, 979-986.
27. García-García F. R., Álvarez-Rodríguez J., Rodríguez-Ramos I., and
Guerrero-Ruiz A. (2010). The use of carbon nanotubes with and without
nitrogen doping as support for ruthenium catalysts in the ammonia
decomposition reaction, Carbon 48, 267-276.
28. Sorensen R. Z., Klerke A., Quaade U., Jensen S., Hansen O., and
Christensen C. H. (2006). Promoted Ru on high-surface area graphite for
efficient miniaturized production of hydrogen from ammonia, Catalysis
Letters 112, 77-81.
29. Kowalczyk Z., Krukowski M., Raróg-Pilecka W., Szmigiel D., and
Zielinski J. (2003). Carbon-based ruthenium catalyst for ammonia
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 陳金貴(1990)。公共和私有組織比較的研究。公共政策學報,12,43-60頁。
2. 陳金貴(1993)。美國非營利組織的分析。行政學報,25,27-46頁。
3. 陳金貴(2003)。志願服務的內涵。人事月刊,36(5),10-12頁。
4. 謝高橋(1986)。激發志願服務增強社區福利。社區發展季刊,34,57~61頁。
5. 林啟鵬(1987)。志願服務的動力過程。社區發展季刊,39,97-104頁。
6. 蔡漢賢(1990)。志願服務的涵義由來範疇與原則。社會建設,74,1-7頁。
7. 陳武雄(1997)。我國志願服務工作推展之回顧與前瞻─從祥和計畫之推廣談起。社區發展季刊,7,5-13頁。
8. 許士軍(1977)。工作滿足、個人特徵與組織氣候-文獻檢討及實證研究。國立政治大學學報,35,13-51頁。
9. 簡秀昭、孫本初(1998)。公部門之志工管理(上)。人事月刊,151,11-25頁。
10. 呂朝賢、鄭清霞(2005)。中老年人參與志願服務的影響因素分析。臺大社會工作學刊,12,1-49頁。
11. 曾華源(2005)。我國志願服務法未來修訂方向的幾個建議。社區發展季刊,111,7-214頁。
12. 鄭彩鳳、吳慧君(2006)。主管家長式領導與行政人員自我效能、組織承諾及工作滿意度關係之研究:結構方程模式之應用。教育與心理研究,29(1),47-75頁。
13. 張雪梅、陳金貴(2008)。服務學習永續發展的新思維。學生事務,49(3.4),70-82頁。
14. 林勝義(2009)。台灣開拓志願服務人力的策略、理論與實務。社區發展季刊,126,173-180頁。
 
系統版面圖檔 系統版面圖檔