|
78 參考文獻 1. 毛宗強. (2008) 氫能 - 21 世紀的綠色能源, 新文京. 2. Karim A., Bravo, J., Gorm D., Conant T., and Datye A. (2005). Comparison of wall-coated and packed-bed reactors for steam reforming of methanol, Catalysis Today 110, 86-91. 3. Lee M. T., Greif R., Grigoropoulos C. P., Park H. G., and Hsu F. K. (2007). Transport in packed-bed and wall-coated steam-methanol reformers, Journal of Power Sources 166, 194-201. 4. Ganley J. C., Riechmann K. L., Seebauer E. G., and Masel R. I. (2004). Porous anodic alumina optimized as a catalyst support for microreactors, Journal of Catalysis 227, 26-32. 5. Ganley J. C., Seebauer E. G., and Masel R. I. (2004). Development of a microreactor for the production of hydrogen from ammonia, Journal of Power Sources 137, 53-61. 6. Stuart H. C. (1935). Method for the production of nitrogen and hydrogen by the thermal decomposition of ammonia, ICI LTD, United States. 7. Zamfirescu C., and Dincer I. (2009). Ammonia as a green fuel and hydrogen source for vehicular applications, Fuel Processing Technology 90, 729-737. 8. 倪平, 储伟, 王立楠, 與 张涛. (2006). 氨催化分解制备无 COx 的氢 气催化剂研究进展, 化工进展 5. 9. Klerke A., Christensen C. H., Nrskov J. K., and Vegge T. (2008). Ammonia for hydrogen storage: Challenges and opportunities, Journal of Materials Chemistry 18, 2304-2310. 10. Sorensen R. Z., Nielsen L. J. E., Jensen S., Hansen O., Johannessen T., 79 Quaade U., and Christensen C. H. (2005). Catalytic ammonia decomposition: Miniaturized production of COx-free hydrogen for fuel cells, Catalysis Communications 6, 229-232. 11. Wang S. J., Yin S. F., Li L., Xu B. Q., Ng C. F., and Au C. T. (2004). Investigation on modification of Ru/CNTs catalyst for the generation of COx-free hydrogen from ammonia, Applied Catalysis B: Environmental 52, 287-299. 12. Yin S. F., Xu B. Q., Wang S. J., Ng C. F., and Au C. T. (2004). Magnesia-carbon nanotubes (MgO-CNTs) nanocomposite: Novel support of Ru catalyst for the generation of COx-free hydrogen from ammonia, Catalysis Letters 96, 113-116. 13. Yin S. F., Xu B. Q., Zhou X. P., and Au C. T. (2004). A mini-review on ammonia decomposition catalysts for on-site generation of hydrogen for fuel cell applications, Applied Catalysis A: General 277, 1-9. 14. Yin S. F., Xu B. Q., Zhu W. X., Ng C. F., Zhou X. P., and Au C. T. (2004). Carbon nanotubes-supported Ru catalyst for the generation of COx-free hydrogen from ammonia, Catalysis Today 93-95, 27-38. 15. Yin S. F., Xu B. Q., Ng C. F., and Au C. T. (2004). Nano Ru/CNTs: A highly active and stable catalyst for the generation of COx-free hydrogen in ammonia decomposition, Applied Catalysis B: Environmental 48, 237-241. 16. 段鏡 (1971). 化學化工藥物大辭典 人文出版社. 17. WikiMedia. (2009). Ammonia, http://en.wikipedia.org/wiki/Ammonia 18. Bradford M. C. J., Fanning P. E., and Vannice M. A. (1997). Kinetics of NH 3 decomposition over well dispersed Ru, Journal of Catalysis 172, 479-484. 19. Chellappa A. S., Fischer C. M., and Thomson W. J. (2002). Ammonia decomposition kinetics over Ni-Pt/Al 2 O 3 for PEM fuel cell applications, Applied Catalysis A: General 227, 231-240. 20. Shioya Y., and Miyaki Y. (2009). Ammonia Decomposition Catalyst and 80 Process for Decomposition of Ammonia Using the Catalyst, Sued-Chemie Catalysts Japan, INC. TOKYO, JP. 21. Stolbov S., and Rahman T. S. (2005). First-principles study of some factors controlling the rate of ammonia decomposition on Ni and Pd surfaces, The Journal of chemical physics 123, 204716. 22. Zheng W. Q., Zhang J., Xu H. Y., and Li W. Z. (2007). NH 3 decomposition kinetics on supported Ru clusters: Morphology and particle size effect, Catalysis Letters 119, 311-318. 23. Krekelberg W. P., Greeley J., and Mavrikakis M. (2004). Atomic and molecular adsorption on Ir(111), Journal of Physical Chemistry B 108, 987-994. 24. Boisen A., Dahl S., Nørskov J. K., and Christensen C. H. (2005). Why the optimal ammonia synthesis catalyst is not the optimal ammonia decomposition catalyst, Journal of Catalysis 230, 309-312. 25. Chen J., Zhu Z. H., Wang S., Ma Q., Rudolph V., and Lu G. Q. (2010). Effects of nitrogen doping on the structure of carbon nanotubes (CNTs) and activity of Ru/CNTs in ammonia decomposition, Chemical Engineering Journal 156, 404-410. 26. Duan X., Zhou J., Qian G., Li P., Zhou X., and Chen D. (2010). Carbon Nanofiber-Supported Ru Catalysts for Hydrogen Evolution by Ammonia Decomposition, Chinese Journal of Catalysis 31, 979-986. 27. García-García F. R., Álvarez-Rodríguez J., Rodríguez-Ramos I., and Guerrero-Ruiz A. (2010). The use of carbon nanotubes with and without nitrogen doping as support for ruthenium catalysts in the ammonia decomposition reaction, Carbon 48, 267-276. 28. Sorensen R. Z., Klerke A., Quaade U., Jensen S., Hansen O., and Christensen C. H. (2006). Promoted Ru on high-surface area graphite for efficient miniaturized production of hydrogen from ammonia, Catalysis Letters 112, 77-81. 29. Kowalczyk Z., Krukowski M., Raróg-Pilecka W., Szmigiel D., and Zielinski J. (2003). Carbon-based ruthenium catalyst for ammonia
|