跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/08/01 13:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:田敦仁
研究生(外文):Tian, Dunren
論文名稱:以NF膜濃縮淨水污泥溶出鋁鹽之研究
論文名稱(外文):The aluminum ion condense from water purification sludge using nanofiltration membrane
指導教授:鄭文伯鄭文伯引用關係
指導教授(外文):Cheng, Wen-Po
口試委員:吳志超余瑞芳
口試委員(外文):Wu, Chi-ChaoYu, Ruey-Fang
口試日期:2012-07-16
學位類別:碩士
校院名稱:國立聯合大學
系所名稱:環境與安全衛生工程學系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:92
中文關鍵詞:淨水污泥酸化鹼化鋁鹽nanofiltration (NF)膜濃縮
外文關鍵詞:water purification sludgeacidificationalkalizationalumnanofiltration (NF) membraneconcentrate
相關次數:
  • 被引用被引用:1
  • 點閱點閱:225
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
淨水污泥再利用的方式一直是受到高度關注的研究重點。一般淨水污泥,主要是由原水中的黏土物質與鋁鹽混凝劑所構成,對於回收污泥中鋁鹽的方法,過去的研究主要以酸化或鹼化程序為主,含鋁污泥加入大量無機酸或鹼,利用氫氧化鋁的兩性特質,在酸性溶液解離為Al3+離子形態,在過量的鹼性溶液反應則溶解形成鋁酸鹽(AlOH4-)離子,但在經濟及安全考量上,酸鹼的添加並不宜過量,因此溶出之鋁鹽濃度通常不高,又因溶出過程中,重金屬會隨之溶出,不適合直接回收再利用。因此,本研究根據nanofiltration (NF)膜的分離機制,利用nanofiltration (NF)膜可對多價離子及大分子有機物產生截留,但對一價離子產生滲透的特性。使得nanofiltration (NF)膜對鋁離子的操作上,酸化硫酸溶液的過程為鋁濃縮程序,鹼化氫氧化鈉溶液過程為鋁過濾程序,並探討濃縮過程中,天然有機物對Al3+離子濃縮產生的影響性,實驗結果發現nanofiltration (NF)膜能有效阻絕Al3+離子的滲出並獲得到高濃度之鋁溶液,而有機物的存在會降低Al3+濃縮效率。濃縮過程不僅提高鋁鹽濃度,重金屬也會因濃縮而提高濃度,因此將濃縮後再將硫酸鉀(K2SO4)加入濃縮液中得到較為純淨之鉀明礬結晶產物。實驗結果發現在鉀/鋁莫耳比1.6以上時,有良好的結晶回收率,而回收率會隨溫度的提高而降低。鹼化溶液經由nanofiltration (NF)膜過濾以去除雜質,研究結果顯示過濾後濾液中的有機物雜質均大幅減少,確實可回收得到較為純淨之鋁酸鹽Al(OH)4-溶液。除此之外,傳統上鋁鹽混凝劑均為酸性,在處理較低酸性原水時,須加入鹼液,以達到混凝最佳化。但由於回收之鋁酸鹽溶液本身為鹼性,因此經由實驗結果證實在處理較低pH值之酸性原水時,不須加入鹼液,鋁酸鹽溶液即可達到極佳的混凝處理效率。
The research of water purification sludge (WPS) reuse has been highly focused in the past period. Hence, reusing the WPS is becoming an important topic, and recovering alum from WPS is one of the many practical alternatives. Most previous research efforts have been conducted on studying the amphoteric characteristic of aluminum hydroxide for investigating the optimum pH range to dissolve the Al(III) species from WPS. In order to think of the cost and safety, the addition of acid and base should not be excessive, but cause the dissolution of the aluminum concentration lower. Evenlet the heavy metals dissolved in the water, reducing the effects of recycling.
Therefore, this study will use the nanofiltration (NF) membranes as the Al concentrate equipment, with the character of NF membrane can interception of multivalent ions and organic molecules, but penetration of monovalent ions. Explore the process of Al concentration and discuss how presence of organic matter can affect the Al3+ ion in concentrate process. The experimental results show that NF membranes can intercept the Al3+ ion to obtain the high concentration of aluminum solution, while the presence of organic matter will reduce the Al3+ concentrate efficiency. The process of concentration not only improve the concentration of alum salts, but also raise the improvement of concentration of heavy metals, therefore, adding the concentrated solution of potassium sulfate (K2SO4) will be more pure potassium alum crystal products. The experimental results showed the crystalline recovery rate in K/Al molar ratio is 1.6, while the recovery rate will decrease with increasing the temperature. Alkalization of the solution passed through NF membrane filtration to remove impurities, the results show that the organic impurities in the permeate after filtrating the significant reduction, and recycling more pure Al(OH)4- solution. In addition, the traditional alum coagulants are acidic in dealing with lower acidic raw water necessary to add the alkali solution, to achieve the coagulation optimization. Because of the recovery of Al(OH)4- solution is alkaline, so the results confirmed the low pH of the raw water, without needing to add the alkali solution, Al(OH)4- solution can get the best coagulation effects.

目錄
摘要 I
Abstract III
目錄 V
圖目錄 VIII
表目錄 X
第一章 緒論 1
1.1 研究背景 1
1.2研究目的 2
第二章 文獻回顧 4
2.1 淨水污泥之種類與特性 4
2.1.1 淨水污泥之種類 4
2.1.2 混凝作用機制 6
2.1.3 鋁鹽污泥之生成 7
2.2 鋁鹽污泥回收 9
2.2.1 污泥鋁回收之方法 10
2.2.2 酸化 15
2.2.3 鹼化 17
2.3 薄膜程序 18
2.3.1 薄膜種類與形式 18
2.3.2薄膜原理與機制 21
2.3.3 NF膜分離過程 24
2.4 結晶原理與方法 25
2.4.1 溶解度與過飽和度 25
2.4.2 成核現象 28
第三章 研究方法 30
3.1 研究架構 30
3.2 實驗過程 32
3.2.1 濃縮程序 32
3.2.2 複鹽結晶配製鉀明礬 34
3.2.3 過濾程序 35
3.3 實驗器材與設備 37
3.3.1 實驗材料 37
3.3.2 實驗設備 39
第四章 結果與討論 44
4.1 淨水污泥主要組成 44
4.2 淨水污泥鋁鹽酸溶特性 46
4.3 濃縮程序 48
4.3.1 不同膜的截留效果 48
4.3.2 不同初始鋁鹽濃度的濃縮效率 49
4.3.3 有機物對濃縮效率的影響 51
4.3.4不同酸化濃度對濃縮效益的影響 53
4.3.5高操作壓力下有機物對濃縮效率的影響 57
4.3.6高操作壓力下加入不同酸濃度對濃縮的影響 59
4.4 複鹽結晶配製鉀明礬 62
4.4.1 鋁鹽濃度對於鉀明礬結晶的影響性 63
4.4.2 以鉀明礬結晶回收鋁鹽 67
4.4.3 溫度對鉀明礬回收率的影響 72
4.5 過濾程序 73
4.5.1 酸化、鹼化對nanofiltration (NF)膜的影響性 74
4.5.2 不同混凝劑處理低酸性原水之探討 79
第五章 結論與建議 81
5.1 結論 81
5.2 建議 83
參考文獻 84
圖目錄
圖 2-1 Al(H2O)63+水解示意圖(Amirthargjah and O’Melia, 1990) 8
圖 2-2 污泥中溶解有機碳(DOC)與Al(Ⅲ)濃度隨pH值變化曲線(Prakash et al., 2004) 11
圖 2-3 攪拌強度對鋁鹽回收率之影響 16
圖 2-4 薄膜分離粒徑之比較(陳彥旻,2003) 18
圖2-5 正滲透、壓力阻尼滲透、反滲透過程示意圖(Cath et al., 2006) 22
圖 2-6 溶解度和溫度的關係(鄭錫圭,1997) 27
圖 3-1 研究架構 31
圖 3-2 薄膜實驗裝置圖 43
圖 4-1 EDS元素成分分析 45
圖 4-2 淨水污泥XRD 晶相分析結果 45
圖 4-3 鋁濃度和pH值隨著硫酸濃度改變 47
圖 4-4 濃縮過程膜通量和滲透液累加體積隨時間的改變 50
圖 4-5 濃縮過程滲透壓的改變 50
圖 4-6 濃縮過程鋁濃度隨時間的改變 51
圖 4-7 濃縮過程膜通量和累加體積隨時間的改變 52
圖 4-8 濃縮過程鋁及TOC隨時間的改變 53
圖 4-9 濃縮過程膜通量和累加時間隨時間的改變 54
圖 4-10 濃縮過程滲透壓的改變 55
圖 4-11 有機物在濃縮過程濃度的變化 55
圖 4-12 濃縮過程鋁濃度隨時間的改變 56
圖 4-13 濃縮過程膜通量和累加體積隨時間的改變 58
圖 4-14 濃縮過程鋁濃度隨時間的改變 58
圖 4-15 濃縮過程膜通量和累加體積隨時間的改變 60
圖 4-16 濃縮過程滲透壓的改變 60
圖 4-17 有機物在濃縮過程濃度的變化 61
圖 4-18 濃縮過程鋁濃度隨時間的改變 61
圖 4-19 鉀明礬溫度與溶解度的關係(楊煒琨,1988) 63
圖 4-20 不同壓力下,濃縮過程鋁濃度隨時間的改變 65
圖 4-21 鉀/鋁莫耳比對鋁鹽去除率和鉀明礬回收率的關係 68
圖 4-22 鉀明礬XRD晶相結果分析 71
圖 4-23 溫度對鋁鹽去除率和鉀明礬回收率的關係 73
圖 4-24 濃縮過程膜通量和累加體積隨時間的改變 75
圖 4-25 濃縮過程滲透壓的改變 76
圖 4-26 有機物在濃縮過程濃度的變化 76
圖 4-27 濃縮過程鋁濃度隨時間的改變 77
圖 4-28 Al2(SO4)3、PACl、Al(OH)4-三種混凝劑之濁度比較 80 
表目錄
表 2-1 鋁鹽回收技術方法與特點比較 13
表 2-2 MF、UF、NF、RO薄膜之比較(陳啟明,2004;朱敬平,2007) 20
表2-3 不同有機薄膜材質比較(陳啟明,2004;林何印,2005;經濟部工業局,2000) 20
表 2-4 初成核與次成核的比較(洪再生,1996) 29
表 3-1 薄膜之基本資料表 39
表 4-1 濃縮前、後重金屬濃度 66
表 4-2 飲用水處理藥劑之公告規範 66
表 4-3 加入硫酸鉀後結晶形成鉀明礬 69
表 4-4 鉀明礬重金屬檢測 72
表 4-5 0.3N(硫酸)濃縮液及0.5N(氫氧化鈉)滲透液,重金屬與有機物濃度之比較 78


Akbari, A. S., Desclaux, J. C., Remigy, Aptel P. (2002) Treatment of textile dye effluents using a new photografted nanofiltration membrane, Desalination, Vol. 149, 101-107.
Amirtharagjah, A., O’Melia, C. R. (1990) Chap 6: Coagulation and Flocculation, Water Quality and Treatment 5th, American Water Works Association: 6.1.
Amirtharajah, A., O’Melia, C. R. (1990) Coagulation processes; destabilization, mixing, and flocculation. McGraw-Hill, New York, 269-365.
Balannec, B., Gésan-Guiziou G., Chaufer B., Rabiller-Baudry M., Daufin G., (2002) Treatment of dairy process waters by membrane operations for water reuse and milk constituents concentration, Desalination, Vol. 147, 89-94.
Blais, J. F., Tyagi, R. D., Auclair, J. C., Huang, C. P. (1992) Comparison of acid and microbial leaching for metal removal from municipal sludge. Water Science and Technology, 26, 197-206.
Bishop, M. M., Rolan, A. T., Bailey, T. L. & Cornwell, D. A. (1987) Testing of alum recovery for solids reduction and resue. Journal American water works association, 79(6), 76-83.
Broul, M., Nyvly, J., Sohnel, O., (1981) Solubility in Inorganic Two-Component Systems, p.132, Elsevier Science, Amsterdam.
Bowen, W. R., Mohammad A. W. (1998) A theoretical basis for specifying nanofiltration membranes — dye/salt/water streams, 257–264.
Cath, T.Y., Childress A. E., Elimelech M. (2006) Forward osmosis: Principles, applications, and recent developments. Journal of Membrane Science, 281(1-2), 70-87.
Chu, w. (1999) Lend metal removal by recycled alum sludge. Water Research, 33(13), 3019-3025.
Cornwell, D. A., Susan, J. A. (1979) Characteristics of Acid-Treated Alum Sludges. Jour. AWWA., 71 (10), 604-608.
Cornwell, D., Lemunyon R. (1980) Feasibility studies on liquid ion exchange for alum recovery from water treatment plant sludges. AWWA, 72(1), 64-68.
Cornwell, D. A., Susan, J. A. (1979) Characteristics of Acid-Treated Alum Sludges. Jour. AWWA., 71 (10), 604-608.
Cornwell, D A, Susan J A. (1979) Characteristics of acid2treated alum sludges. Journal2AmericanWaterWorks Association, 71 (10) : 604 - 608.
Cornwell, D. A., Lemunyon R. M. (1980) Feasibility studies on liquid ion exchange for alum recovery from water treatment p lant sludges. Journal2American Water Works Association, 72 (1) : 64 - 68.
Cornwell, D. A., Cl Ine, G. C. (1980) Metals removal from wastewater sludgeswith liquid2ion exchange. ASCE Environ Eng Div Spec Conference, 540 – 545
Dagmar, Š., Petr M., Richard J. W., Pavlína V. (2004) Influence of ionic strength and pH of dispersed systems on microfiltration, Desalination, Vol.163, pp. 323-332.
Derjaguin, B. V., Landau, L. D. (1941) Theory of stability of strong charge lyophobioc sols and of thd adhension of strong charged particles in solutions of electrolytes, Acta Physicochimca URSS,14:633-662.
Dhage, S.S., Paramasivam, R., Ravindar, R., Andey, S.P. (1985) Recovery of alum from water treatment sludge by liquid ion exchange (LIE) technique. J. Indian Wat. Works Assoc. 17(2), 193-199.
Driscoll, C. T. (1987) Aluminum Speciation and Toxicity in Upland Water, Environmental Chemistry Toxicity of Aluminum, Lewis Publishers。
Hahn, H. H., Stumm, W. (1968) Kinetics of coagulation with hydrolyzed aluminum, J. Colloid Interface Sci., 28:133.
Horth, H., Gendebien, A., Agg, R., Cartwright, N. (1994) Treatment and disposal of waterworks sludge in selected European countries. In: Foundation for water research technical reports, No.FR 0428.
Hostomsk´a V., Hostomsk´ J. (2007) Recovery of ammonium alum from waste solutions with a varying ratio of NH4 to Al in groundwater remediation after underground uranium leaching. Journal of Hazardous Materials, 147, 342-349.
Ishikawa, S., Ueda, N., Okumura, Y., Iida, Y., Baba, (2007) K., Recovery of coagulant from water supply plant sludge and its effect on clarification, Journal of Material Cycles and Waste Management , 9(2), 167-172.
Karakulski, K., Morawski, A. W., (2002) Treatment of spent emulsion from a cable factory by an integrated UF/NF membrane system, Desalination, Vol. 149, 163-167.
Kaiya Y., Itoh, Y., Fujita, K., Takizawa S. (1996) Study on fouling materials in themembrane treatment process for potable water,Desalination106,71–77.
Lamer, V. K., Healy, T. W. (1963) Adsorption-flocculation reactions of macro-molecules at the solid-liquid interface, Pure Appl. Chem., 13:112.
Lamer, V. K. (1964) Coagulation symposium introduction, J. Colloid Interface Sci ,19:291.
Li, C. W., Lin, J. L., Kang, S. F., Liang, C. L. (2005) Acidification and alkalization of textile chemical sludge: volume/solid reduction, dewaterability, and Al(Ⅲ) recovery. Separation and Purification Technology, 42, 31-37.
Li, P., Sengupta, A. K. (1995) Selective recovery of alum from clarifier sludge using composite ion exchange membranes. In: Proc.of 27th mid Atlantic Ind.Waste Conf., Bethlehem, PA (Technomic).
Masschelein, W. J., Devleminck, R., Genot, J. (1985) The feasibility of coagulant recycling by alkaline reaction of aluminum hydroxide sludges, Journal of Water Research, 19(11), 1363-1368.
Munir, C. (1998) Ultrafiltration and microfiltration handbook, Technomic, Lancaster.
Mullin, J. W. (1972) Crystallization, Butterworth, London.
Mullin, J. W., Garside, J., Unahabhokkha, R. (1965) Diffusivities og Ammonium and Potassium Alums in Aqueous Solutions, J. Appl. Chem., 15, 502.
Packham, R. F. (1965) Some studies of the coagulation of dispersed clays with hydrolyzed salts, J. Colloid Interface Sci., 20:81.
Panswad, T., Chamnan, P. (1992) Aluminum recovery from industrial aluminum sludge, Water Supply, 10 (4), 159-167.
Petruzzelli, D., Volpe, A., Limoni, N., Passino, R. (1998) An ion exchange based process for coagulants recovery from water clarifier sludge. In Proceedings of the 5th International Conference IONEX'98, Wrexham, UK, July , 5-9.
Petruzzell, I. D., Volpe, A., Imon, L. N., Passimo, R. (2000) Coag2 ulants removal and recovery from water clarifier sludge. Water Research, 34 (7) : 2177 - 2182.
Prakash, P., Hoskins, D., SenGupta, A. K. (2004) Application of homogeneous and heterogeneous cation-exchange membranes in coagulant recovery from water treatment plant residuals using Donnan membrane process, Journal of Membrane Science 237, 131–144.
Prakash, P., SenGupta, A. K., (2003) Selective coagulant recovery from water treatment plant residuals using Donnan membrane process, Environ. Sci. Technol. 37(20) , 4468–4474.
Praksh, P., Hoskins, D., Sengupta, A. K. (2003) App lication of homogeneous and heterogeneous cation2exchange membranes in coagulant recovery from water treatment p lant residuals using Donnan membrane p rocess[ J ]. Journal ofMembrane Science, 237 (1 - 2) : 131 - 144.
Reverse Osmosis and Nanofiltration, American Water Works Association, Denver(1999).
Stumm, W., O’Melia, C. R. (1968) Stoichometry of Coagulation, Jour. AWWA, 60: 5: 514.
Sheng, H. L., Mu, C. L. (1998) Synthesis of aluminum ammonium sulfate from waste aluminum processing solution by crystallization. Journal of Hazardous Materials, B:63, 211–222.
Tanninen, J., Mänttäri, M., Nyström, M., (2006) Nanofiltration of concentrate acidic copper sulphate solutions, 92–96.
Verwey, E. J., Overbeek, G. T. J. (1948) Theory of the stability of lyophobic colloid, Elserier, Amsterdam.
Wang, M. C., Hull, J. Q., Jao, M., Dempsey, B. A., Cornwell, D. A. (1922) Engineering behavior of water treatment sludge. Journal of Engineering Mechanics, ASCE, 118, 848-864.
Weber, J. W. J., Boeuf, L. E. J. (1999) Processes for advanced treatment of water, Water Science and Technology, Vol. 40, pp. 11-19.
Wen-Po Cheng, Chi-Hua Fu, Ping-Hung Chen, Ruey-Fang Yu. (2012) Dynamics of aluminum leaching from water purification sludge, Journal of Hazardous Materials, 149-155.
Xu, G. R., Tan, X. C., Wang, Y. C., Wang, N. (2009) Recycle of Alum recovered from water treatment sludge in chemically enhanced primary treatment. Journal of Hazardous Materials, 161, 663-669.
Xu, G. R., Tan, X. C., Wang, Y. C., Wang, N. (2009) Recycle of Alum recovered from water treatment sludge in chemically enhanced primary treatment. Journal of Hazardous Materials, 161, 663-669.
Yeom, C. K., Lee, S. H., Lee, J. M. (2000) Effect of the ionic characteristics of anionic solutes in reverse osmosis, Journal of Membrane Science, Vol. 169, 237-247.
Yuan, W., Zydney, A. L. (2000) Humic Acid Fouling during Ultrafiltration. Environ. Sci. Technol.,34(23),5043-5050.
Yuan W., Zydnety, A. L. (1999) Humic acid fouling during microfiltration, J. Membr. Sci.157 , 1–12.
Zhao, Y. Q., Babatunde, A. O. (2007) Constructive approaches toward water treatment works sludge management: An international review of beneficial reuses. Critical reviews in environmental science and technology, 37, 129-164.
王湛 「模分離技術基礎」,化學工業出版社,第二版,第166頁 (2006)
朱敬平 「薄膜分離之應用」,財團法人中興工程顧問社環境工程研究中心 (2007)。
吳志超、黃志彬 「淨水廠污泥之調理脫水」,自來水會刊,17(1),30-35(1998)。
吳鎮芳 「鉀明礬結晶動力學研究」,國立台灣大學博士論文 (1990)。
李佩玲 「極微薄膜技術處理染料水溶液之研究」,國立台灣科技大學化學工程研究所碩士論文 (2003)。
林何印 「超濾與逆滲透薄膜程序處理及回收工業廢水之研究」,國立中央大學環境工程研究所碩士論文 (2005)。
俞挺、沈東旭、楊程、邵欽、宋平三、何麗娜、潘文秀、畢樹平 「鋁鹽污泥回收研究進展」,中國,環境監測管理與技術,21(2),45-52 (2009)。
陳彥旻 「半導體業化學機械研磨廢水回收處理再利用技術研究」。成功大學環境工程學系碩士論文 (2003)。
陳啟明 「NF 薄膜程序應用於自來水淨水工程之探討」,國立屏東科技大學食品科學系碩士論文 (2004)。
莊海濤,尹啟超,丁仕瓊,王東田 「淨水沉澱污泥中鋁鹽混凝劑的回收研究」,中國,渤海大學學報(自然科學版), 30(3),202-206 (2009)。
張添晉 「淨水處理廠廢污處理技術之研究」,中華民國自來水協會(1997)
湯鴻霄 「無機高分子絮凝理論與絮凝劑」,中國北京,中國建築工業出版社(2006)。
黃聖皓 「淨水場酸化污泥脫水性探討」。 逢甲大學環境工程與科學研究所碩士論文 (2005)。
經濟部工業局 「廢水薄膜處理技術應用與推廣手冊」,經濟部工業局(2000)。
楊煒琨 「溫度對鉀明礬結晶動力之影響」,國立台灣大學化學工程學研究所碩士論文 (1988)。
鄭錫圭 「雜質對鉀明礬的影響」,國立台灣大學化學工程學研究所碩士論文 (1997)。
薛志宏 「淨水場污泥基本脫水性質」,自來水會刊雜誌,第45 期,第34-49 頁, (1993)。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top