跳到主要內容

臺灣博碩士論文加值系統

(3.235.120.150) 您好!臺灣時間:2021/08/03 07:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉東昀
研究生(外文):Liu, Dongyun
論文名稱:以斜板渠道式太陽光Fenton反應系統處理彩色濾光片廢水之研究
論文名稱(外文):Treatment Of Color Filter Wastewater By A Pilot-Scale Inclined Plate Curvature Channel (IPCC) Solar Photo-Fenton Reactor
指導教授:郭文旭
指導教授(外文):Kuo, Wenshiuh
口試委員:游庶海黃德坤
口試委員(外文):You, ShuhaiHuang, Dekun
口試日期:2012-07-10
學位類別:碩士
校院名稱:國立聯合大學
系所名稱:環境與安全衛生工程學系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:139
中文關鍵詞:太陽能photo-Fenton程序彩色濾光片廢水反應曲面法中央合成設計斜板渠道式聚光聚熱光反應器Fresnel lens
外文關鍵詞:solar photo-Fenton processcolor filter wastewaterresponse surface methodologycentral composite designinclined plate curvature channel reactorFresnel lens
相關次數:
  • 被引用被引用:5
  • 點閱點閱:307
  • 評分評分:
  • 下載下載:33
  • 收藏至我的研究室書目清單書目收藏:0
本研究嘗試應用高級氧化程序中之太陽能photo-Fenton程序來處理含有高濃度有機污染物之光電業彩色濾光片廢水,並藉由自行研發之太陽光Fenton斜板渠道式聚光聚熱反應系統之操作探討,進而了解太陽光Fenton斜板渠道式聚光聚熱反應系統處理光電業廢水之成效及應用之可行性。
為達研究目標,本研究先設定photo-Fenton程序之三個重要參數(廢水初始pH值、[H2O2]0/ COD0及[H2O2]0/[Fe2+]0)為實驗設計 - 反應曲面法(RSM)中央合成設計(CCD)之探討因子,並透過變異數分析(ANOVA),結果顯示在本研究範圍內,[H2O2]0/ COD0對反應效率影響最大,[H2O2]0/[Fe2+]0影響能力次之,廢水初始pH值影響最小。另藉由反應曲面結合多元迴歸式之分析,且在廢水處理後目標設定為COD值小於100 mg/L之條件下,彩色濾光片廢水於太陽能photo-Fenton程序之較適操作條件為廢水初始pH: 3.0、[H2O2]0/ COD0 = 2 g/g、[H2O2]0/[Fe2+]0 = 7.5。於此條件下,當光能強度由0 W/m2增加至750 W/m2(UVa+b = 114 W/m2)時,彩色濾光片廢水COD去除率可提高43%;另當熱能強度暨廢水溫度由15 ℃提升至45 ℃時,其彩色濾光片廢水COD反應分解速率可增加1.88倍,說明太陽光能及熱能強度提升對於photo-Fenton程序之處理效率有加成之效應。
在較適操作條件下,以太陽光Fenton斜板渠道式暨Fresnel lens聚光聚熱模廠反應系統處理彩色濾光片廢水,此模廠系統其光能強度(UVa+b)較無聚光聚熱系統可提升1.89~3.76倍,廢水溫度則可同時提高8~16 ℃,在反應60 min後,廢水殘留COD值均可低於100 mg/L。在夏秋季(9月)之操作下,只要反應45 min,廢水 COD值即可低於100 mg/L,COD去除率及礦化率可分別達93%及65%,且在反應過程中未產生毒性更強之中間產物,並使廢水呈現無生物毒性之反應,此說明藉由此模廠反應系統之操作與測試,更能驗證本研究研發之太陽光Fenton斜板渠道式聚光聚熱反應系統能有效地處理光電業有機廢水。
因此綜合本研究之結果,可知RSM之CCD實驗設計法為探求photo-Fenton程序較適操作條件,及判斷各因子間對反應效率影響能力之有效研究工具,將其結果與本研究研發之太陽光Fenton斜板渠道式暨Fresnel lens聚光聚熱反應器結合應用,不僅可處理大量有機廢水,且可更有效地將潔淨能源-太陽能導入於有機廢水之處理應用上,降低處理系統之操作暨設備費用,達到節能減碳之效果,極具實務應用之價值。

Organic wastewater from color filter industry generally contains so many residuals and it is variable in composition and strength at different stages of process. The effluent is usually characterized as a high chemical oxygen demand (COD) of wastewater. In this study, one of advanced oxidation processes (AOPs) - solar photo-Fenton process was used to treat the color filter wastewater. Specifically, a pilot-scale Fresnel lens mounted inclined plate curvature channel (IPCC) reactor was well designed, established and evaluated for the treatment of color filter wastewater.
At first, a central composite design (CCD) of surface response methodology (RSM) was adopted to investigate the effect of three major process factors including the initial pH of solution, [H2O2]0/COD0 and [H2O2]0/[Fe2+]0, on the degradation efficiency of color filter wastewater. With the assistance of ANOVA analysis, it was found that the factor of [H2O2]0/COD0 has the most significant effect on the degradation efficiency while the initial pH of solution showed the least effect. Optimal reaction conditions based on RSM were established as under an initial pH of 3.0, a [H2O2]0/COD0 ratio of 2 and a [H2O2]0/[Fe2+]0 ratio of 7.5 for a reaction time of 60 min, which could reach the effluent standard of EPA, Taiwan (COD < 100 mg/L). Under these condition, the COD degradation efficiency can be enhanced 43% as light intensity increased from 0 W/m2 to 750 W/m2(UVa+b = 114 W/m2). Moreover, the COD degradation rate of color filter wastewater could increase 1.88 times as heat irradiation in terms of wastewater temperature increasing from 15 to 45 0C. Accordingly, it revealed that solar photo-Fenton process is a promised and feasible technology for treating color filter wastewater.
In addition, it was found that solar light could be focused, resulting in its intensity increased 1.89 to 3.76 times and the temperature of wastewater could be raised 8 to 16 ℃ with the operation of pilot-scale IPCC. Therefore, the residual COD of color filter wastewater was kept under 100 mg/L after a 60-min of treatment in each season. In particular, the residual COD of treated wastewater was below 100 mg/L for a merely 45-min of treatment associated with a COD degradation efficiency of 93% and a mineralization efficiency of 65% in summer/autumn season (September). Also, the microtoxicity of wastewater was almost removed.
Based on the results obtained in this study, it was illustrated that CCD was an efficient approach to predict the optimum operation conditions of photo-Fenton reaction, and the ANOVA analysis was a superior tool to evaluate the impact of various factors on the degradation efficiency of wastewater. In addition, the well designed Fresnel lens mounted IPCC reactor showed a synergistic effect on the solar photo-Fenton process not only in effectively dealing with a large amount of industrial organic wastewater, but also in the sector of energy conservation and carbon reduction for future application.

摘要 I
ABSTRACT III
目錄 V
表目錄 IX
圖目錄 XI

第一章 緒論 1
1.1 研究緣起 1
1.2 研究目的 3
1.3 研究內容 3
第二章 文獻回顧 6
2.1 光電業彩色濾光片產業概論 6
2.1.1 光電業彩色濾光片之發展現況 6
2.1.2 彩色濾光片製程簡介 7
2.1.3 彩色濾光片製程廢水來源 10
2.2 Photo-Fenton程序原理概述及其在實廠廢水處理之應用 12
2.2.1 Photo-Fenton程序原理概述 12
2.2.2 廢水pH之影響 13
2.2.3 H2O2添加量之影響 15
2.2.4 Fe2+添加量之影響 15
2.2.5 [H2O2]/[Fe2+]與H2O2/COD添加比例之影響 16
2.2.6 Photo-Fenton程序應用於實廠廢水之處理 17
2.3 太陽能結合photo-Fenton程序在廢水處理之應用 19
2.3.1 太陽光光強度之影響 20
2.3.2 太陽熱能暨廢水溫度之影響 22
2.4 菲涅爾透鏡(Fresnel lens) 25
2.4.1 Fresnel lens原理概述 25
2.4.2 應用Fresnel lens與太陽能在廢水處理上之效益 26
2.5 太陽能光反應器之類型與應用 27
2.5.1 複合拋物面集中光反應器 29
2.5.2 雙層外殼平板式光反應器 32
2.5.3 水膜式光反應器 33
2.5.4 光反應器比較分析 35
2.6 反應曲面法實驗設計概念與應用 37
第三章 實驗設備、材料與方法 43
3.1 研究流程 43
3.2 實驗設備 52
3.3 實驗操作方法 59
3.4 實驗藥品與試劑 61
3.5 樣品分析方法 62
3.5.1 廢水中COD、TOC、色度、H2O2及Fe2+殘留量之分析 62
3.5.2 廢水中pH值、ORP、溫度之量測 65
3.5.3 太陽光之光強度量測 65
3.5.4 廢水生物毒性之測定 66
第四章 結果與討論 67
4.1 以RSM技術進行photo-Fenton程序處理彩色濾光片廢水較適化之探討 67
4.1.1 迴歸模式建立與變異數分析 67
4.1.2 photo-Fenton程序處理彩色濾光片廢水較適操作條件探求 75
4.1.3 反應參數對photo-Fenton程序處理彩色濾光片廢水之影響 77
4.2 太陽光能對photo-Fenton程序處理彩色濾光片廢水之探討 81
4.2.1 太陽光光強度對處理效率之影響 81
4.2.2 太陽熱能暨廢水溫度對處理效率之影響 87
4.3 以太陽光Fenton斜板渠道式聚光聚熱反應系統處理彩色濾光片廢水之效率探討 93
4.3.1 反應器聚光性能分析暨改良 93
4.3.2 季節對彩色濾光片廢水處理效率之影響 106
4.3.3 彩色濾光片廢水氧化過程生物毒性變化之探討 111
第五章 結論與建議 114
參考文獻 116

Ahmed, B., Limem, E., Abdel-Wahab, A. and Nasr, B. (2011). Photo-Fenton treatment of actual agro-industrial wastewaters, Industrial and Engineering Chemistry Research, 50, 6673-6680.

Alfano, O.M., Bahnemann, D., Cassano, A.E., Dillert R. and Goslich R. (2000). Photocatalysis in water environments using artificial and solar light, Catalysis Today, 58, 199-230.

Ay, F., Catalkaya, E.C. and Kargi, F.(2009). A statistical experiment design approach for advanced oxidation of Direct Red azo-dye by photo-Fenton treatment, Journal of Hazardous Materials, 162, 230-236.

Bekbolet, M., Lindner, M., Weichgrebe, D. and Bahnemann, D.W. (1996). Photocatalytic detoxification with the thin-film fixed-bed reactor (TFFBR): Clean-up of highly polluted landfill effluents using a novel TiO2-photocatalyst, Solar Energy, 56, 455-469.

Bockelmann, D., Weichgrebe, D., Goslich, R. and Bahnemann, D.W. (1995). Concentrating versus non-concentrating reactors for solar water detoxification, Solar Energy Materials and Solar Cells, 38, 441-451.

Catalkaya, E.C. and Kargi, F. (2007). Color, TOC and AOX removals from pulp mill effluent by advanced oxidation processes: A comparative study, Journal of Hazardous Materials, B139, 244-253.

Catalkaya, E.C. and Kargi, F. (2007). Effects of operating parameters on advanced oxidation of diuron by the Fenton’s reagent: A statistical design approach, Chemosphere, 69, 485-492.

Dopar, M., Kusic, H. and Koprivanac, N. (2011). Treatment of simulated industrial wastewater by photo-Fenton process. Part I: The optimization of process parameters using design of experiments (DOE), Chemical Engineering Journal, 173, 267-279.

Farre, M.J., Domenech X. and Peral, J. (2006). Assessment of photo-Fenton and biological treatment coupling for Diuron and Linuron removal from water, Water Research, 40, 2533-2540.

Faust, B.C. and Hoigne, J. (1990). Photolysis of Fe (III)-hydroxy complexes as sources of OH radicals in clouds, fog and rain, Atmospheric Environment, 24, 79-89.

Fu, J.F., Zhao, Y.Q., Xue, X.D., Li, W.C. and Babatunde, A.O. (2009). Multivariate-parameter optimization of acid blue-7 wastewater treatment by Ti/TiO2 photoelectrocatalysis via the Box–Behnken design, Desalination, 243, 42-51.

Gernjak, W., Fuerhacker, M., Fernandez-Ibanez P., Blanco, J. and Malato, S. (2006). Solar photo-Fenton treatment—Process parameters and process control, Applied Catalysis B: Environmental, 64, 121-130.

Gernjak, W., Krutzler, T., Glaser, A., Malato, S., Caceres, J., Bauer, R. and Fernandez-Alba A.R. (2003). Photo-Fenton treatment of water containing natural phenolic pollutants, Chemosphere, 50, 71-78.

Gernjak, W., Maldonado, M.I., Malato, S., Caceres, J., Krutzler, T., Glaser, A. and Bauer, R. (2004). Pilot-plant treatment of olive mill wastewater (OMW) by solar TiO2 photocatalysis and solar photo-Fenton, Solar Energy, 77, 567-572.

Gogate, P.R. and Pandit, A.B. (2004). A review of imperative technologies for wastewater treatment II: hybrid methods, Advances in Environmental Research, 8, 553-597.

Gonzalez-Bahamon, L.F., Hoyos, D.F., Benitez, N. and Pulgarin, C. (2011). New Fe-immobilized natural bentonite plate used as photo-Fenton catalyst for organic pollutant degradation, Chemosphere, 82, 1185-1189.

Hermosilla, D., Cortijo, M. and Huang, C.P. (2009). The role of iron on the degradation and mineralization of organic compounds using conventional Fenton and photo-Fenton processes, Chemical Engineering Journal, 155, 637-646.

Kajitvichyanukul, P. and Suntronvipart, N. (2006). Evaluation of biodegradability and oxidation degree of hospital wastewater using photo-Fenton process as the pretreatment method, Journal of Hazardous Materials, B138, 384-391.

Kang, S.F., Liao, C.H. and Po, S.T. (2000). Decolorization of textile wastewater by photo-fenton oxidation technology, Chemosphere, 41, 1287-1294.

Kavitha, V. and Palanivelu, K. (2004). The role of ferrous ion in Fenton and photo-Fenton processes for the degradation of phenol, Chemosphere, 55, 1235-1243.

Klamerth, N., Malato, S., Maldonado, M.I., Aguera, A. and Fernandez-Alba, A.R. (2010). Application of photo-Fenton as a tertiary treatment of emerging contaminants in municipal, Environmental Science and Technology, 44, 1792-1798.

Lapertot, M., Pulgarin, C., Fernandez-Ibanez, P., Maldonado, M.I., Perez-Estrada, L., Oller, I., Gernjak, W. and Malato, S. (2006). Enhancing biodegradability of priority substances (pesticides) by solar photo-Fenton, Water Research, 40, 1086-1094.

Li H., Zhou, S., Sun, Y. and Lv, J. (2010). Application of response surface methodology to the advanced treatment of biologically stabilized landfill leachate using Fenton’s reagent, Waste Management, 30, 2122-2129.
Lofrano, G., Rizzo, L., Grassi, M. and Belgiorno, V. (2009). Advanced oxidation of catechol: A comparison among photocatalysis, Fenton and photo-Fenton processes, Desalination, 249, 878-883.

Lucas, M.S. and Peres, J.A. (2009). Removal of COD from olive mill wastewater by Fenton's reagent: Kinetic study, Journal of Hazardous Materials, 168, 1253-1259.

Lucas, M.S., Mosteo R., Maldonado, M.I., Malato, S. and Peres, J. (2009). Solar photochemical treatment of winery wastewater in a CPC reactor, Journal of Agricultural and Food Chemistry, 57, 11242-11248.

Malato, S. and Caceres, J. (2001). Degradation of imidacloprid in water by photo-Fenton and TiO2 photocatalysis at a solar pilot plant: a comparative study, Environmental Science and Technology, 35, 4359-4366.

Malato, S., Blanco, J., Vidal, A. and Richter, C. (2002). Photocatalysis with solar energy at a pilot-plant scale: an overview, Applied Catalysis B: Environmental, 37, 1-15.

Malato, S., Fernandez-Ibanez, P., Maldonado, M.I., Blanco, J. and Gernjak, W. (2009). Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends, Catalysis Today, 147, 1-59.

Monteagudo, J.M. and Duran, A. (2006). Fresnel lens to concentrate solar energy for the photocatalytic decoloration and mineralization of orange II in aqueous solution, Chemosphere, 65, 1242-1248.

Monteagudo, J.M., Duran, A., Aguirre, M. and Martin, I.S. (2010). Photodegradation of Reactive Blue 4 solutions under ferrioxalate-assisted UV/solar photo-Fenton system with continuous addition of H2O2 and air injection, Chemical Engineering Journal, 162, 702-709.

Monteagudo, J.M., Duran, A., Aguirre, M. and Martin, I.S. (2011). Optimization of the mineralization of a mixture of phenolic pollutants under a ferrioxalate-induced solar photo-Fenton process, Journal of Hazardous Materials, 185, 131-139.

Monteagudo, J.M., Duran, A., Guerra, J., Garcia-Pena, F. and Coca, P. (2008). Solar TiO2-assisted photocatalytic degradation of IGCC power station effluents using a Fresnel lens, Chemosphere, 71, 161–167.

Monteagudo, J.M., Duran, A., Martin, I.S. and Aguirre, M. (2010). Effect of light source on the catalytic degradation of protocatechuic acid in a ferrioxalate-assisted photo-Fenton process, Applied Catalysis B: Environmental, 96, 486-495.

Monteagudo, J.M., Duran, A., Martin, I.S. and Aguirre, M. (2010). Catalytic degradation of Orange II in a ferrioxalate-assisted photo-Fenton process using a combined UV-A/C–solar pilot-plant system, Applied Catalysis B: Environmental, 95, 120-129.

Morais, J.L. and Zamora, P.P. (2005). Use of advanced oxidation processes to improve the biodegradability of mature landfill leachates, Journal of Hazardous Materials, B123, 181-186.

Navarro, S., Fenoll, J., Vela, N., Ruiz, E. and Navarro, G. (2011). Removal of ten pesticides from leaching water at pilot plant scale by photo-Fenton treatment, Chemical Engineering Journal, 167, 42-49.

Noorjahan, M., Reddy, M.P., Kumari, V.D., Lavedrine, B., Boule, P. and Subrahmanyam, M. (2003). Photocatalytic degradation of H-acid over a novel TiO2 thin film fixed bed reactor and in aqueous suspensions, Journal of Photochemistry and Photobiology A: Chemistry, 156, 179-187.

Oliveira, R., Almeida M.F., Santos L. and Madeira, L.M. (2006). Experimental design of 2,4-Dichlorophenol oxidation by Fenton’s reaction, Industrial and Engineering Chemistry Research, 45, 1266-1276.

Pintor, A.M.A., Vilar, V.J.P. and Boaventura R.A.R. (2011). Decontamination of cork wastewaters by solar-photo-Fenton process using cork bleaching wastewater as H2O2 source, Solar Energy, 85, 579-587.

Radjenovic J., Sirtori, C., Petrovic, M., Barcelo, D.and Malato, S. (2010). Characterization of intermediate products of solar photocatalytic degradation of ranitidine at pilot-scale, Chemosphere, 79, 368-376.

Rodriguez, M., Sarria, V., Esplugas, S. and Pulgarin, C. (2002). Photo-Fenton treatment of a biorecalcitrant wastewater generated in textile activities: biodegradability of the photo-treated solution, Journal of Photochemistry and Photobiology A: Chemistry, 151, 129-135.

Rodriguez, S.M., Richter C., Galvez J.B. and Vincent M. (1996). Photocatalytic degradation of industrial residual waters, Solar Energy, 56, 401-410.

Seller, R.M. (1980). Spectrophotometric determination of hydrogen peroxide using potassium (IV) oxalate, Analyst, 105, 950-954.

Stephan, B., Ludovic, L. and Dominique, W. (2011). Modelling of a falling thin film deposited photocatalytic step reactor for water purification: Pesticide treatment, Chemical Engineering Journal, 169, 216-225.

Sun, J.H., Sun, S.P., Fan, M.H., Guo, H.Q., Lee Y.F. and Sun, R.X. (2008). Oxidative decomposition of p-nitroaniline in water by solar photo-Fenton advanced oxidation process, Journal of Hazardous Materials, 153, 187-193.

Sun, S.P., Li, C.J., Sun, J.H., Shi, S.H., Fan, M.H. and Zhou, Q. (2009). Decolorization of an azo dye Orange G in aqueous solution by Fenton oxidation process: Effect of system parameters and kinetic study, Journal of Hazardous Materials, 161, 1052-1057.

Tamimi, M., Qourzal, S., Barka, N., Assabbane, A. and Ait-Ichou, Y. (2008). Methomyl degradation in aqueous solutions by Fenton’s reagent and the photo-Fenton system, Separation and Purification Technology, 61, 103-108.

Torrades, F., Garcıa-Montano, J., Garcia-Hortal, J.A., Domenech, X. and Peral, J. (2004). Decolorization and mineralization of commercial reactive dyes under solar light assisted photo-Fenton conditions, Solar Energy, 77, 573-581.

Van Well, M., Dillert, R., Bahnemann, D., Benz, V. and Müller, M. A. (1997). A novel nonconcentrating reactor for solar water detoxification, Journal of Solar Energy Engineering, 119, 114-119.

Vilar, V.J.P., Capelo, S.M.S., Silva, T.F.C.V. and Boaventura, R.A.R. (2011). Solar photo-Fenton as a pre-oxidation step for biological treatment of landfill leachate in a pilot plant with CPCs, Catalysis Today, 161, 228-234.

Will, I.B.S., Moraes, J.E.F., Teixeira, A.C.S.C., Guardani, R. and Nascimento C.A.O. (2004). Photo-Fenton degradation of wastewater containing organic compounds in solar reactors, Separation and Purification Technology, 34, 51-57.

Wu, Y., Zhoua, S., Qin, F., Ye, X. and Zheng, k. (2010). Modeling physical and oxidative removal properties of Fenton process for treatment of landfill leachate using response surface methodology (RSM), Journal of Hazardous Materials, 180, 456-465.

Zapata, A., Malato, S., Sanchez-Perez, J.A., Oller, I. and Maldonado, M.I. (2010). Scale-up strategy for a combined solar photo-Fenton/biological system for remediation of pesticide-contaminated water, Catalysis Today, 151, 100-106.

Zapata, A., Oller, I., Bizani, E., Sanchez-Perez, J.A., Maldonado, M.I. and Malato, S. (2009). Evaluation of operational parameters involved in solar photo-Fenton degradation of a commercial pesticide mixture, Catalysis Today, 144, 94-99.

Zapata, A., Oller, I., Rizzo, L., Hilgert, S., Maldonado, M.I., Sanchez-Perez, J.A. and Malato, S. (2010). Evaluation of operating parameters involved in solar photo-Fenton treatment of wastewater: Interdependence of initial pollutant concentration, temperature and iron concentration, Applied Catalysis B: Environmental, 97, 292-298.

Zayani, G., Bousselmi, L., Mhenni, F. and Ghrabi, A. (2009). Solar photocatalytic degradation of commercial textile azo dyes: Performance of pilot plant scale thin film fixed-bed reactor, Desalination, 246, 344-352.

Zhu, X., Tian, J., Liu, R. and Chen, L. (2011). Optimization of Fenton and electro-Fenton oxidation of biologically treated coking wastewater using response surface methodology, Separation and Purification Technology, 81, 444-450.

吳佳玲 (2010),應用Fresnel lens強化太陽能photo-Fenton程序處理彩色濾光片廢水之研究,國立聯合大學環境與安全衛生工程學系,碩士論文。

吳涖棱 (2006),以太陽光photo-Fenton程序處理氯酚廢水之研究,國立聯合大學環境與安全衛生工程學系,碩士論文。

李旻恬 (2009),太陽能在Fenton like程序處理染料廢水之效應研究,國立聯合大學環境與安全衛生工程學系,碩士論文。

林苡任 (2009),菲涅爾透鏡(Fresnel lens)之光學設計與精密成形,國立高雄應用科技大學模具工程系,碩士論文。

邱舜稜 (2002),以Mircotox檢測方法評估實際廢水生物毒性之研究,國立中央大學環境工程學系,碩士論文。

馬寧元 (2003),可見光光觸媒技術之開發,化工資訊與商情,第4期。

郭文旭、劉東昀、張仁祐 (2011),以EPR與RSM技術進行Fenton程序最適化之探討,國立聯合大學環境與安全衛生工程學系,第三十六屆 廢水處理技術研討會論文集。

陳玟妤 (2011),以太陽光/TiO2光催化程序處理偶氮性染料廢水之研究,國立聯合大學環境與安全衛生工程學系,碩士論文。

陳益滽 (2005),光電廠廢溶劑回收系統應用及系統改善,國立交通大學工學院產業安全與防災學程,碩士論文。

陳淑貞 (2008), 我國發展兩兆雙星產業之展望,行政院經濟建設委員會。

黃慶淵 (2005),以photo-Fenton程序處理實驗室有機廢液之研究,國立屏東科技大學環境工程與科學系,碩士論文。

劉柏逸 (2007),結合太陽光photo-Fenton與生物氧化程序處理光電業廢水之研究,國立聯合大學環境與安全衛生工程學系,碩士論文。

顏丹青 (2004),彩色濾光片(CF)介紹,化工,第51卷,第一期,29-49。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top