跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/30 15:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃政智
研究生(外文):Cheng-Chih Huang
論文名稱:水蒸氣和KOH活化法製備稻草與稻殼活性碳吸附酚類、染料、重金屬及CO2之研究
論文名稱(外文):Preparation of activated carbon from Rice hull and Rice straw with steam and KOH for adsorption phenols, dyes, heavy metals and CO2
指導教授:曾如玲曾如玲引用關係
指導教授(外文):Ru-Ling Tseng
口試委員:吳豐智曾四恭黃振家
口試委員(外文):Feng-Chin WuSzu-Kung TsengChen-Chia Huang
口試日期:2012-07-10
學位類別:碩士
校院名稱:國立聯合大學
系所名稱:環境與安全衛生工程學系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:124
中文關鍵詞:活性碳等溫平衡吸附吸附動力學二氧化碳捕獲重金屬
外文關鍵詞:activated carbonsadsorption isothermsadsorption kineticsCO2 captureheavy metals
相關次數:
  • 被引用被引用:1
  • 點閱點閱:597
  • 評分評分:
  • 下載下載:46
  • 收藏至我的研究室書目清單書目收藏:0
本研究以稻殼和稻草為原料,利用水蒸氣、KOH活化法和鹼後處理製備四種活性碳,一為稻殼利用水蒸氣活化法於900 ℃活化2小時;二為稻草於900 ℃活化1小時及1.5小時;三為活化後之稻草活性碳,經鹼後處理;四為稻殼浸泡,KOH/char值為1於780 ℃活化1小時。本文活性碳經BET表面積分析儀、熱重分析儀、FT-IR和元素分析,瞭解不同活性碳之物理和化學特性。吸附使用擬二次式、Elovich式和顆粒內部擴散模式等三種動力學模式探討,瞭解不同活性碳對染料(MG, MB, BB1, AB74)、酚類(4-CP, 4-cresol,4-NP, phenol, 2,4-DCP)的吸附動力學之行為,其中以擬二次式解析較佳;染料及酚類之等溫平衡吸附以Langmuir和Freundlich等溫平衡式解析和比較,以Langmuir解析較佳。對於0 ℃下二氧化碳吸附以稻殼之KOH活化活性碳(RHK1)有良好表現,吸附量為5.59 mmol/g;重金屬Cu2+及Cd2+溶液之等溫吸附,以稻草水蒸氣活化之活性碳(RS9001)吸附量為最高,分別為108.70 g/kg、147.06 g/kg。由研究結果顯示本文不同製備之活性碳,在工程上應用具有個別的潛力。
This study used Rice hull and Rice straw as raw material. Utilizing steam-activation, KOH-activated and base-treated prepared four kind different activated carbons. Activated carbon prepared from Rice hull with steam-activation at 900 ℃ for 2h, and Rice straw with steam-activation at 900 ℃ for 1h and 1.5h. The preparation of activated carbon from Rice straw using a base-leaching process. Activated carbon prepared from Rice hull by KOH-activation with KOH/char material ratio 1 at 780 ℃ for 1h. Activated carbons analysis include BET specific surface area observation as well as the chemical properties, namely, thermo gravimetric analysis (TGA), FT-IR and elemental analysis were measured. Three simplified models including the Elovich equation, intraparticle diffusion modeland pseudo-second-order equation were used to test the adsorption kinetics. The adsorption kinetics of dyes(MG, MB, BB1, AB74) and phenols(4-CP, 4-cresol,4-NP, phenol, 2,4-DCP) were best fitted by pseudo-second-order equation. Two simplified models including the Langmuirand and Freundlich isotherm equation were selected to follow the adsorption processes; the adsorption isotherm equation was in agreement with the Langmuirand equation. CO2 capture performances were tested at 0 ℃and 50 ℃ by BET sorptometer. CO2 adsorption capacity of RHK1 activated carbon up to 5.59 mmol/g were achieved at 0 ℃ under 1 atm. The adsorption isotherm of Cu2+ and Cd2+ from aqueous solution; the adsorption isotherm equation was in agreement with the Langmuirand equation. Cu2+ and Cd2+ adsorption capacity of RS9001 activated carbon up to 108.70 g/kg and 147.06 g/kg. The study proved that activated carbon in this work had application potential.
摘要............................................................................ I
Abstract ................................................. II
圖目錄............................... VII
表目錄...................................... X
第一章 前言........................ 1
1.1 研究緣起與目的 .................... 1
1.2 研究內容 ................................ 2
第二章 文獻回顧.................. 5
2.1 活性碳之原料 ........................ 5
2.2 農業廢棄物之利用 ................... 7
2.3 活性碳製備技術 .................... 9
2.3.1 化學活化法 .................... 10
2.3.2 物理活化法 ..................... 11
2.4 活性碳吸附 .......................... 12
2.4.1 吸附之動力學 ................ 12
2.4.2 吸附之等溫平衡 ............ 15
2.5 其他應用 .............................. 18
2.5.1 氣相吸附 .......................... 18
2.5.2 重金屬污染及處理 .................................................... 19
2.5.3 活性碳應用於超高電容器之應用 ............................................. 21
第三章 實驗方法與設備................................................................... 23
3.1 實驗設備及藥品 .......................................................................... 23
3.2 活性碳製備 ...................................................................... 28
3.2.1 稻殼(RH)以水蒸氣活化法製備 ................................ 28
3.2.2 稻殼(RH)以化學劑量KOH活化法製備 .......................................... 28
3.2.3 稻草(RS)以水蒸氣活化法及鹼後處理製備 .................... 29
3.3 活性碳之物理性質分析 ................................................... 30
3.3.1 BET比表面積分析及孔徑分佈 ....................................... 30
3.3.2 掃描式電子顯微鏡(SEM, Scanning Electron Microscope) ..... 30
3.4 活性碳之化學性質分析 ..................................................... 31
3.4.1 元素分析(EA, elemental analysis) ......................... 31
3.4.2 熱重分析(TGA, Thermogravimetric Analysis) ..................... 31
3.4.3 傅立葉轉換紅外線光譜儀(FT-IR) ................................ 31
3.5 活性碳之應用 .............. 32
3.5.1 CO2吸附之測定 ................. 32
3.5.2 活性碳吸附重金屬 ............... 32
3.6 吸附實驗 ............................. 34
3.6.1 吸附動力學 ..................... 34
3.6.2 吸附等溫平衡 ................. 34
第四章 結果與討論............ 35
4.1 活性碳之物理化學性質特性 ................... 35
4.1.1 水蒸氣活化法稻殼活性碳之物理化學性質 .................... 35
4.1.2 以KOH活化法稻殼活性碳之物理化學性質 .................... 45
4.1.3 稻草以水蒸氣活化法與鹼後處理活性碳之物理化學性質 ............................ 54
4.2 活性碳之液相吸附 ............. 67
4.2.1 吸附動力學 .................... 67
4.2.2 吸附之等溫平衡 ............. 87
4.3 其他應用 ............................. 99
4.3.1 氣相吸附 .......................... 99
4.3.2 活性碳吸附重金屬 ........ 102
4.3.3 電化學應用 ................... 109
4.4 各種活性碳之特點 ............. 110
第五章 結論與建議......... 113
5.1 結論.................................... 113
5.2 建議.................................... 116
參考文獻.................................. 117
Aharoni, C., Tompkins, F.C. (1970), Kinetics of adsorption and desorption and the Elovich equation, in: D.D. Eley, H. Pines, P.B. Weisz (Eds.). Advances in Catalysis and Related Subjects, Vol. 21, Academic Press, New York, pp. 1-49.

Azevedo, D.C.C., Araujo, J.C.S., Bastos-Neto, M., Torres, A.E.B., Jaguaribe, E.F., Cavalcante, C.L. (2007), Microporous activated carbon prepared from coconut shells using chemical activation with zinc chloride, Micropor. Mesopor. Mater. 100, 361–364.

Bansal, R.C., Goyal, M. (2005), Activated Carbon Adsorption. Taylor & Francis, 90-90.

Bansal, R.C., Donnet, J.B., Stoeckli, F. (1988), Active Carbon, New York and Basel, MarcelDekker, INC,

Barrett, E.P., Joyner, L.G., Halenda, P.P. (1951), The determination of pore volume and area distribution in porous substances. I. Computation from nitrogen isotherms. J. Am. Chem. Soc. 73, 373.

Brunauer, S., Emmett, P. H., Teller, E. (1938), Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 60, 309–319.

Brunauer, S., Deming, L.S., Deming, W.E., Teller, E.(1940), On a theory of the van der Waals adsorption of gases. Journal of American Chemistry Society. 62, 1723–1746.

Castro, J.B., Bonelli, P.R., Cerrella, E.G., Cukierman, A.L. (2000), Phosphoric acid activation of agricultural residues and bagasse from sugar cane: influence of the experimental conditions on adsorption characteristics of activated carbons. Ind. Eng. Chem. Res. 394166–4172

de Boer, J.H., Lippens, B.C., Linsen, B.G., Broekhoff, J.C.P., van den Heuvel, A., Osiga, T.J. (1966), The t-curve of multimolecular N2-adsorption, J. Colloid and Interface Science. 21, 405.

Chan, W.C.R., Kelbon, M., Krieger, B.B. (1985), Modeling and experimental verification of physical and chemical processes during pyrolysis of a large biomass particle. Fuel. 64 , 1505–1513.

Daifullah, A.A.M., Girgis, B.S., Gad, H.M.H. (2003), Utilization of agro-residues (rice husk) in small waste water treatment plans. Materials Letters 57, 1723–1731.

Guo, Y., Rockstraw, D.A. (2007), Activated carbons prepared from rice hull by one-step phosphoric acid activation. Microporous and Mesoporous Materials 100, 12-19

Ho, Y.S., Huang, C.T., Huang, H.W. (2002), Equilibrium sorption isotherm for metals ions on tree fern. Process Biochem 37, 1421–1430.

Hu, H., Trejo, M., Nicho, M.E., Saniger, J.M., García-Valenzuela, A. (2002), Adsorption kinetics of optochemical NH3 gas sensing with semiconductor polyaniline films. Sensors and Actuators B: Chemical 82, 14–23.

Hamadi, N.K., Swaminathan, S., Chen X.D. (2004), Adsorption of Paraquatdichloride from aqueous solution by activated carbon derived from used tires. Journal of Hazardous Materials B112, 133–141.

Imamoglu, M., Tekir, O. (2008), Removal of copper (II) and lead (II) ions from aqueous solutions by adsorption on activated carbon from a new precursor hazelnut husks. Desalination 228, 108–113.

Juang, R.S., Chen, M.L. (1997), Application of the Elovich equation to the kinetics of metal sorption with solvent-impregnated resins. Ind. Eng. Chem. Res. 36, 813-820.

Joan L., Marc P.T. (2009), Influence of surface heterogeneity on hydrogen adsorption on activated carbons. Colloids and Surfaces A: Physicochemical and Engineering Aspects 350, 63-72.

Krishnan, K .A., Anirudhan, T.S. (2002), Removal of mercury(II) from aqueous solutions and chlor-alkali industry effluent by steam activated and sulphurised activated carbons prepared from bagasse pith: kinetics and equilibrium studies. J Hazard Mater. B92,161–183.

Krishnani, K.K., Mengb, X., Christodoulatos, C., Veera M., Boddu (2008), Biosorption mechanism of nine different heavy metals onto biomatrix from rice husk. Journal of Hazardous Materials 153, 1222–1234.

Lo, S.F., Wang, S.Y., Tsaib, M.J., Lin, L.D. (2011), Adsorption capacity and removal efficiency of heavy metal ions by Moso and Ma bamboo activated carbons. chemical engineering research and design 926

Liou,T.H. (2004), Evolution chemistry and morphology during the carbonization and combustion of rice husk, Carbon 42, 785–794.

Liou,T.H., Wu, S.J. (2009), Characteristics of microporous/mesoporous carbons prepared from rice husk under base- and acid-treated conditions. Journal of Hazardous Materials 171, 693–703.

Liu, Y., Guo, Y., Gao, W., Wang, Z., Ma, Y., Wang, Z. (2012), Simultaneous preparation of silica and activated carbon from rice husk ash. Journal of Cleaner Production 32, 204–209.

Lua, A.C. and Guo, J. ( 2000), Activated carbon prepared from oil palm stone by one-step CO2 activation for gaseous pollutant removal. Carbon 38, 1089–1097.

McKay, G., Ho, Y.S. (1999), The sorption of lead(II) s on peat. Water Res. 33, 578-584.

Martín, C.F., Plaza, M.G., Pis, J.J., Rubiera, F., Pevida, C., Centeno, T.A. (2010), On the limits of CO 2 capture capacity of carbons. Separation and Purification Technology 74, 225-229.

Murat, T., Mustafa, İ. (1999), Adsorption of Copper and Cadmium lons by Activated Carbon From Rice Hulls. Turk J Chem 23, 185 - 191

Onal, Y., Akmil-Basar, C., Sarici-Ozdemir, C., Erdogan, S. (2006), Textural development of sugar beet bagasse activated with ZnCl2.Journal of Hazardous Materials 142, 138–143.

Pevida, C., Plaza, M.G., Arias, B., Fermoso, J., Rubiera, F., Pis, J.J. (2008), Surface modification of activated carbons for CO2 capture. Applied Surface Science 254, 7165–7172

Pastor-Villegas, J. and Duran-Valle, C.J. (2002), Pore structure of activated carbons prepared by carbon dioxide and steam activation at different temperatures from extracted rockrose. Carbon 40, 397–402.

Plaza, M. G., Pevida, C., Pis, J.J., Rubiera, F. (2011), Evaluation of the cyclic capacity of low-cost carbon adsorbents for post-combustion CO2 capture. Energy Procedia 4, 1228-1234.

Perrin, A., Celzard, A., Albiniak, A., Kaczmarczyk, J., Mareche, J.F., Furdin, G. (2004), NaOH activation of anthracites: effect of temperature on pore textures and methane storage ability. Carbon 42, 2855–2866.

Poinern, G. E.J., Senanayake, G., Shah, N., Thi-Le, X.N., Parkinson, G.M., Fawcett, D. (2011), Adsorption of the aurocyanide, Au(CN) 2- complex on granular activated carbons derived from macadamia nut shells – A preliminary study. Minerals Engineering 24, 1694–1702.

Rouquerol, J., Avnir, D., Fairbridge, C.W., Everett, D.H., Haynes,J.H., Pernicone, N., Ramsay, J.D.F., Sing, K.S.W., Unger, K.K.(1994).Recommendations for the characterization of porous solids, Pure Appl.Chem. 66, 1739–1758.

Sun, K., Jiang, J.C. (2010), Preparation and characterization of activated carbon from rubber-seed shell by physical activation with steam. Biomass and bioenergy 34, 539–544

Satterfield, C. N. (1980), Heterogeneous Catalysis in Practice. New York.

Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., (1985), Reporting physisorption deta for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57, 603.

Sousa-Aguilar, E.F., Liebsch, A., Chaves, B.C., Costa, A.F., (1998), Influence of external surface area of small cryatallite zeolites on the micropore volume determination”, Microporous and Mesoporous Materials 25, 185.

Sing, K.S.W and Gregg, S.J. (1982), Adsorption, Surface Area and Porosity, Academic Press, New York.

Suzuki, M. (1990), Adsorption Engineering, Kodansha, Elsevier, Tokyo.
Valente-Nabais, J.M., Laginhas, C.E.C., Carrott, P.J.M., Ribeiro Carrott, M.M.L. (2011), Production of activated carbons from almond shell. Fuel Processing Technology 92, 234–240.

Vargas, A.M.M. , Cazetta, A.L., Garcia, C.A., Moraes, J.C.G.,Nogami E.M., Lenzi E., Costa, W.F., Almeida V.C. (2011), Preparation and characterization of activated carbon from a new raw lignocellulosic material: Flamboyant (Delonix regia) pods. Journal of Environmental Management 92, 178-184.

Wu, F.C., Tseng, R.L., Hu, C.C. (2005), Comparisons of properties and adsorption performance of KOH-activated and steam-activated carbons. Micropor. Mesopor. Mat. 80, 95.

Wigmans, T. (1989), Industrial aspects of production and use of activated carbons. Carbon 27, 13–22

Wu W.C., Wang, S.L., Tzou, Y.M., Chen, J.H., Wang, M.K. (2007), The adsorption and catalytic transformations of chromiumon Mn substituted goethite. Applied Catalysis B: Environmental 75, 272–280.

Wu, F.C., Tseng, R.L., (2008), High adsorption capacity NaOH-activated carbon for dye removal from aqueous solution. J. Hazard. Mat. 152, 1256-1267.

Wu, F.C., Tseng, R.L., Juang, R.S. (2009), Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics. Chem. Eng. J. 153, 1-8.

Wu, F.C., Tseng R.L., Huang, S.C., Juang, R.S. (2009), Characteristics of pseudo-second-order kinetic model for liquid-phase adsorption: A Mini-review. Chem. Eng. J. 151 1-9.

Wen, Q., Li, C., Cai, Z., Zhang, W. , Gao, H., Chen, L., Zeng, G., Shu, X., Zhao, Y. (2011), Study on activated carbon derived from sewage sludge for adsorption of gaseous formaldehyde. Bioresource Technology 102, 942-947.

Wang, H., Zhong, Y., Li, Q., Yang, J., Dai, Q. (2008), Cationic starch as a precursor to prepare porous activated carbon for application in supercapacitor electrodes. Journal of Physics and Chemistry of Solids 69, 2420–2425.

Weber, W.J, Morris, J.C. (1962), Advances in water pollution research: removal of biologically resistant pollutant from waste water by adsorption, In Proceedings of 1st International Conference on Water Pollution Symposium. Pergamon Press, Oxford Vol. 2, pp. 231-266,

Weber, W.J., Morris J.C. (1963), Kinetics of adsorption on carbon from solutions, J. Sanit. Eng. Div. Am. Soc. Civ. Eng. 89, 31-60.

Wigmans T. (1989), Industrial aspects of production and use of activated carbons. Carbon 27, 13-22.

Yun, C.H., Park, Y.H., Park, C.R. (2001), Effects of pre-carbonization on porosity development of activated carbons from rice straw. Carbon 39, 559–567.

Yorgun, S.,Vural, N., Demiral, H. (2009), Preparation of high-surface area activated carbons from Paulownia wood by ZnCl2 activation. Microporous and Mesoporous Materials122,189–194

Yang, J., Qiu, K. (2011), Development of high surface area mesoporous activated carbons from herb residues. Chemical Engineering Journal167, 148–154.

Zhang, J., Fu H., Lv X., Tang J., Xu X (2011), Removal of Cu(II) from aqueous solution using the rice husk carbons prepared by the physical activation process. Biomass and bioenergy 35, 464–472.

Zhang Z., Xu M., Wang H., Li Z. (2010), Enhancement of CO2 adsorption on high surface area activated carbon modified by N2, H2 and ammonia. Chemical Engineering Journal 160, 571-577.

Zhao, W., Fierro, V., Zlotea, C., Aylon, E., Izquierdo, M.T., Latroche, M., Celzard, A. (2011), Activated carbons with appropriate micropore size distribution for hydrogen adsorption. International journal of hydrogen energy 36, 5431-5434.

倪禮豐,2007,稻殼再利用技術,花蓮區農業專訊,61: 19-20。

黃豐文,2011,重金屬污染不容忽視,環境檢驗所,027

環保署,2009年9月21日,環保署三步曲 發展生質能源,經濟日報

樊邦棠,1994,「環境工程化學」,科技圖書股份有限公司,台北。

行政院農委會台中區農業改良場(http://tdares.coa.gov.tw/show_index.php)

行政院農委會高雄區農業改良場 (http://www.kdais.gov.tw/)

台中市稻草再利用資訊網 (http://tcepb.com.tw/index.asp?fn=index)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top