跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/02 21:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李林鴻
研究生(外文):Lee Ling-Hung
論文名稱:高分子填注中空光纖 Fabry-Perot 光 纖干涉儀之感測應用
論文名稱(外文):Fiber Fabry-Perot Interferometer based on Polymer-Filled Hollow Core Fiber for Sensing Application
指導教授:李澄鈴
指導教授(外文):Lee Cheng-Ling
口試委員:韓斌李朱育
口試委員(外文):Han PinLee Ju Yi
口試日期:2012-07-25
學位類別:碩士
校院名稱:國立聯合大學
系所名稱:LED光電製程產業專班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:71
中文關鍵詞:中空光纖光纖式 Fabry-Perot 干涉儀高分子聚合物
外文關鍵詞:Hollow core fiberFiber Fabry-Perot interferometerPolymer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:273
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要是利用中空光纖( Hollow Core Fiber, HCF )填入高分子聚合物( Polymer ),利用Polymer不同於光纖的特性研製出兩種不同嵌入式微米共振腔的Fabry-Perot干涉儀,並將其做感測應用。
當單模光纖( Single Mode Fiber, SMF )一端切平後熔接一段中空光纖,再將中空光纖裁切至適當長度,利用毛細現象(Capillarity)吸入液態狀的單體分子(Monomer),吸入單體分子至所需長度之後,再用紫外光曝照將單體分子固化成固體之高分子聚合物( Polymer ),因高分子聚合物其材料特性與光纖材料相異,再加上結構的變化即可做出不同形式之微型共振腔的光纖式 Fabry-Perot干涉儀。因高分子聚合物的體積會隨外在環境溫度而變化進而靈敏地改變元件干涉情形。因此本研究所提之元件在溫度感測上,比傳統的全光纖式干涉儀結構,如長週期光纖光柵來得更有彈性也更靈敏。

This study presents a polymer filled hollow core fiber (HCF) to form two kinds of micro-cavity fiber Fabry-Perot interferometers (FFPIs). Characteristics of the filled polymer are different from those of silica fibers which would be a good feature for sensing application.
In the experiment, a single-mode fiber (SMF) splices a section of the HCF, and then endface of the HCF is filled with a monomer by using capillarity process. The photo-polymerizable monomer is cured by an ultraviolet (UV) light and further to form a solid polymer structure. Different micro-cavities can be fabricated by changing the duration time of the capillarity processes that can form many kinds of FFPIs with distinct structures. Since thermal expansion coefficient (TEC) and thermo-optic coefficient (TOC) of the polymer are much larger than that of the silica fiber, the micro-cavity of the FFPI can be greatly varied by the thermal effect. Thus spectral response of interference fringes would be changed with high sensitivity. Experimental results show that the proposed polymer-filled FFPIs have high sensitivity with flexible property and the sensing performances are much better than some of conventional all-fiber based devices, such as long-period fiber gratings.

目錄
摘要 II
Abstract III
圖目錄 VI
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 2
第二章 中空光纖 5
2.1中空光纖特性與結構 5
2.2中空光纖應用 7
第三章 Fabry-Perot干涉儀 9
3.1 Fabry-Perot干涉原理 9
3.2 Fabry-Perot干涉的應用 11
光纖式Fabry-Perot干涉儀 12
第四章 高分子填注中空光纖Fabry-Perot光纖干涉儀 16
4.1高分子填注中空光纖Fabry-Perot干涉儀原理 17
4.2 元件製作 19
4.3熔接機參數控制 22
4.4 填注高分子聚合物與固化 22
4.5製作流程 24
第五章 Air gap共振腔Fabry-Perot光纖干涉儀(AG-FFPI) 28
5.1實驗架構 28
5.2實驗頻譜特性量測 30
5.3 實驗模擬 35
5.4分析與討論 41
第六章 高分子共振腔光纖式Fabry-Perot干涉儀(PF-FFPI) 44
6.1元件與實驗架構 44
6.2實驗頻譜特性量測 45
6.3實驗分析與討論 51
第七章 結果與討論 54
參考文獻 57


參考文獻
[1] J.-H.Chen, X.-G. Huang, and Z.-J.Huang, “Simple thin-film fiber optic temperature sensor based on Fabry-Perot interference,” Opt. Eng., vol. 49, pp. 044402-044402-4, 2010.
[2] Q. Shi, F. Lv, Z. Wang, L. Jin, J.-J. Hu, Z. Liu, G. Kai, and X.Dong, “Environmentally Stable Fabry–Pérot-Type Strain Sensor Based On Hollow-Core Photonic Bandgap Fiber,” IEEE Photon. Technol. Lett., vol. 20, pp. 237-239, 2008.
[3] J. Wang, B. Dong, E. Lally, J. Gong, M. Han, and A. Wang, “Multiplexed high temperature sensing with sapphire fiber air gap-based extrinsic Fabry–Perot interferometers,” Opt. Lett., vol. 35, pp. 619-621, 2010.
[4] C.-L. Lee, W.-Y. Hong, H.-J. Hsieh, and Z.-Y. Weng, “Air gap fiber Fabry-Perot interferometer for highly sensitive micro-airflow sensing,” IEEE Photon. Technol. Lett., vol. 23, no.23, pp.905-907, 2011.
[5] T. Wei, Y. Han, Y. Li, H.-L. Tsai, and H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement,” Opt. Exp., vol. 16, pp. 5764-5769, 2008.
[6] C.-L. Lee, W-F. Liu, Z.-Y. Weng, F.-C. Hu, “Hybrid AG-FFPI/ RLPFG for simultaneously sensing refractive index and temperature,” IEEE Photon. Technol. Lett., vol. 23, pp. 1231-1233, 2011.
[7] Y. Jung, S. Lee, B.-H. Lee, and K. Oh,“Ultracompact in-line broadband Mach–Zehnder interferometer using a composite leaky hollow-optical-fiber waveguide,” Opt. Lett., vol. 33, pp. 2934-2936 ,2008.
[8] K. A. Murphy, M. F. Gunther, A. M. Vengsarkar, and R. O. Claus, “Quadrature phase-shifted, extrinsic Fabry- Perot optical fiber sensors,” Opt. Lett., vol. 16, pp. 273-275, 1991.
[9] J. S. Sirkis, D. D. Brennan, M. A. Putman, T. A. Berkoff, A. D. Kersey, and E. J. Friebele, “In-line fiber étalon for strain measurement, ” Opt. Lett., vol. 18, pp. 1973-1975, 1993.
[10] Y. Jeong, B. Yang, B. Lee, H. S. Seo, A. D. Kersey, and K. Oh, “Electrically Controllable Long-Period Liquid Crystal Fiber Gratings,” IEEE Photon. Technol. Lett., vol. 12, pp. 519-521, 2000.
[11] Y. Miao, B. Liu, K. Zhang, Y. Liu, and H. Zhang, “Temperature tunability of photonic crystal fiber filled with Fe3O4 nanoparticle fluid, ” Appl. Phy. Lett., vol. 98, pp. 021103-021103-3, 2011.
[12] Y. Gong, Y.-J. Rao, Z.-L. Ran, and Y. Wu, “Temperature-Insensitive Micro Fabry-Perot Strain Sensor Fabricated by Chemically Etching Er-Doped Fiber,” IEEE Photon. Technol. Lett., vol. 21, pp. 1725-1727, 2009.
[13] M. Pang and W. Jin, “A hollow-core photonic bandgap fiber polarization controller,” Opt. Lett., vol. 36, pp. 16-18, 2011.
[14] M. Deng, C.-P. Tang, Ka. Zhang, L.-C. Xu, and M. Han, “Refractive index measurement using photonic crystal fiber-based Fabry – Perot interferometer,” Appl. Opt., vol. 49, pp. 1593-1598, 2010.
[15] J. Sirkis, T. A. Berkoff, R. T. Jone s, H. Singh, A. D. Kersey, E. J. Friebele, and M. A. Putnam, “In-line fiber etalon (ILFE) fiber-optic strain sensors,” J. Lightw. Technol., vol. 13, pp. 1256-1263, 1995.
[16] H. Singh and J. S. Sirkis, “Simultaneously measuring temperature and strain using optical fiber microcavities,” J. Lightw. Technol. vol.15, pp. 647-653, 1997.
[17] Y. J. Rao, T. Zhu, X. C. Yang, and D. W. Duan, “In-line fiber-optic etalon formed by hollow-core photonic crystal fiber, ” Opt. Lett., vol.32, pp. 2662–2664, 2007.
[18] H. Y. Choi, K. S. Park,S. J. Park,U.-C. Paek,B. H. Lee, and E. S. Choi, “Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry–Perot interferometer, ” Opt. Lett., vol.33, pp. 2455-2457, 2008.
[19] D. W. Duan, Y. J. Rao, W. P. Wen, J. Yao, D. Wu, L. C. Xu, and T. Zhu, “In-line all-fibre Fabry-Perot interferometer high temperature sensor formed by large lateral offset splicing, ” Electron. Lett., vol.47, pp. 401-403, 2011.
[20] C. E. Lee, W. N. Gibler , R. A. Atkins, and H. F. Taylor, “In-line fiber Fabry–Pérot interferometer with high-reflectance internal mirrors, ” J. Lightw. Technol., vol.10, pp. 1376-1379, 1992.
[21] J.-R. Zhao, X.-G. Huang, W.-X. He, and J.-H. Chen, “High-resolution and temperature-insensitive fiber optic refractive index sensor based on fresnel reflection modulated by Fabry-Perot interference, ” J. Lightw. Technol., vol.28, pp. 2799-2803, 2010.
[22] T.Zhu, T. Ke, Y. Rao, K. S. Chiang, “Fabry-Perot optical fiber tip sensor for high temperature measurement,” Opt. Comm.,vol. 283, pp. 3683-3685, 2010.
[23] Z. Huang, Y. Zhu, X. Chen, and A. Wang, “Intrinsic Fabry–Pérot Fiber Sensor for Temperature and Strain Measurements,” IEEE Photon. Technol. Lett., vol. 17, pp. 2403-2405, 2005.
[24] Y.-J. Rao, M. Deng, D.-W. Duan, X.-C. Yang, T. Z., and G.-H. Cheng, “Micro Fabry-Perot interferometers in silica fibers machined by femtosecond laser,” Opt. Exp., vol. 15, pp. 14123-14128, 2007.
[25] T. Wei, Y. Han, H.-L. Tsai, and H. Xiao, “Miniaturized fiber inline Fabry-Perot interferometer fabricated with a femtosecond laser,” Opt. Lett., vol.33, pp. 536-538, 2008.
[26] W. Wang, Q. Yu, F. Li, X. Zhou, and X. Jiang, “Temperature-Insensitive pressure sensor based on all-fused-silica extrinsic Fabry-Perot optical fiber interferometer, ” IEEE Sen. J., vol.12, pp. 2425-2429, 2012.
[27] X. Chen, F. Shen, Z. Wang, Z. Huang, and A. Wang, “Micro-air-gap based intrinsic Fabry–Perot interferometric fiber-optic sensor, ”Appl. Opt., vol.45, pp. 7760-7766, 2006.
[28] V.R. Machavaram, R.A. Badcock, G.F. Fernando, “Fabrication of intrinsic fibre Fabry–Perot sensors in silica fibres using hydrofluoric acid etching, ”Sens. Actuators A., vol.138, pp. 248-260, 2007.
[29] Paula A. R. Tafulo, Pedro. A. S. Jorge, José Luis Santos, Francisco M. Araújo, and Orlando Frazão, “Intrinsic Fabry-Perot Cavity Sensor Based on Etched Multimode Graded Index Fiber for Strain and Temperature Measurement,” IEEE Sens. J., vol.12, pp. 8-12, 2012.
[30] D.-H. Kim, J.-W. Park, H.-K. Kang, C.-S. Hong and C.-G. Kim, “Measuring dynamic strain of structures using a gold-deposited extrinsic Fabry–Perot interferometer,” Smart Mater. Struct., vol. 12 , pp. 1-5, 2003.
[31] K. R. Sohn, and G.-D. Peng, “Mechanically formed loss-tunable long-period fiber gratings realized on the periodic arrayed metal wires,” Opt. Comm., vol. 278, pp. 77-80, 2007.
[32] J. Villatoro, V. Finazzi, G. Coviello, and V. Pruneri, “Photonic crystal fiber enabled micro Fabry-Perot interferometer,” Opt. Lett. , vol.34, pp. 2441-2443, 2009.
[33] Hae Young Choi, Gopinath Mudhana, Kwan Seob Park, Un-Chul Paek, and Byeong Ha Lee, “Cross-talk free and ultra-compact fiber optic sensor for simultaneous measurement of temperature and refractive index,” Opt. Exp., vol. 18, pp. 141-149, 2010.
[34] (http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=7130678)
[35] R.Benmouna, and B. Benyoucef, “Thermophysical and thermo- mechanical properties of norland optical adhesives and liquid crystal composites,” J Appl. Polym. Sci., vol. 108, pp. 4072-4079, 2008.
[36] 黃威博,全光纖式中空光纖元件之研製,聯合大學碩士論文,2011。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top