跳到主要內容

臺灣博碩士論文加值系統

(44.211.117.197) 您好!臺灣時間:2024/05/23 10:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王詩婷
研究生(外文):Shin-Ting Wang
論文名稱:氣盾式大氣壓下化學游離法介面於液相層析質譜分析之研究
論文名稱(外文):The Gas-shield Atmospheric Pressure Chemical Ionization Interface for Use in Liquid Chromatography Mass Spectrometry
指導教授:沈振峯
指導教授(外文):Jenn-Feng Sheen
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:生物科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:129
中文關鍵詞:氣盾式大氣壓化學游離法液相層析質譜直接分析
外文關鍵詞:Gas-shield Atmospheric Pressure Chemical IonizationLiquid Chromatography Mass Spectrometrydirect analysis
相關次數:
  • 被引用被引用:1
  • 點閱點閱:3106
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
大氣壓下化學游離法(atmospheric pressure chemical ionization, APCI)是液相層析質譜中常用的離子化介面之一,其主要原理是利用一尖端放電產生試劑離子與分析物進行氣相離子-分子反應來產生分析物離子。然而,在日常分析時,由於液相層析沖堤物與放電針端長時間直接接觸,因而使放電針端受到顆粒或基質的沉積,進而造成放電狀態改變,使離子訊號產生明顯的系統性變化。針對此現象,本研究嘗試在放電針端外部加上一具有開口之套件包圍住放電針端,並在其內部自後端通入氣體產生氣罩的作用,以改善商業化介面不穩定的問題。其中,本研究之新介面可使用氮氣或氦氣作為其鞘流氣體,同時亦可由儀器上的直流高電壓電源供電,不需另外設置高電壓電源。本研究使用bisoprolol、pioglitazone、vanillin、ethyl vanillin、bisphenol A、p-cresol等六種化合物探討介面的性能。我們首先探討氣罩式介面性質參數(探針位置、電流、鞘流氣體流量、溶液流速效應等)對分析物訊號的影響。再進一步測試新介面與商業化介面在靈敏度及穩定性的差異(單離子源與雙離子源模式)。經由測試結果顯示,此新介面不僅可改善電暈放電不穩定的問題,甚至可提升訊號的靈敏度,同時亦保留商業化雙離子介面的特性。在線性測試的結果亦顯示分析物訊號與濃度間具有良好的線性關係。我們將此介面應用於血液中藥物及尿液中甲苯指標物分析,在0.25-300 ng/ml及 10-500 ng/ml之範圍可得到不錯的線性(r2>0.99),相較於商業化之ESCi介面,靈敏度亦提升約2倍。
另外,我們亦測試新介面對多環芳香族碳氫化合物(polycyclic aromatic hydrocarbons, PAHs)之分析能力,初步結果顯示本介面亦可得到PAH類化合物之M‧+訊號(以氦氣作為鞘流氣體,乙腈作為載流),顯示本介面亦可進行能量轉移反應(penning ionization)對非極性物進行分析,可進一步擴大分析物的極性範圍。
此外,我們亦發現此新介面亦可針對揮發性物質,不需經過前處理直接進行分析。將樣品瓶加入鞘流氣體的流路中,通以氣體將待測物之揮發性物質帶往放電針端反應。結果顯示本裝置可清楚直接測得香草精的標準品粉末、九層塔和柑橘皮之氣味訊號。


APCI is one of the most popular ionization interfaces for LC and MS. The ionization of analytes in APCI source are based on serious ion-molecule reactions which are induced by the corona discharge. The ion signals in APCI usually exhibit higher tolerance to the biological matrices than the most popular ESI. However, the signal in APCI is not as stable as in ESI. One possible reason could be attributed to the deposition of particle on the corona tip during consecutive analyses. To prevent the instability problem of APCI, in this study, a coaxial sheath gas was added to the corona tip to isolate the corona discharge from the HPLC effluent. In the design of gas-shield atomospheric pressure chemical ionization (GS-AP) interface, both nitrogen and helium gases were used as the sheath gas and no change of the high voltage supply was observed. Six model compounds were analyzed with the GS-AP interface to study the properties of the new interface. The effects of the interface parameters (probe positions of ESI probe and GS-AP probe, sheath gas flow, solvent flow, discharge current….etc) in each interface were studied. After optimization of each interface parameters, the responses of the tested compounds were compaired. The results showed that significant improvements in both stability and sensitivity are detected by using the GS-AP interface. Dgnamic range from 500 ng/mL and down to the range of 0.1-1 ng/ml were also obtained (for bisoprolol, pioglitazone, vanillin, ethyl vanillin, bisphenol A and p-cresol). To evaluate the possibility of penning ionization, additionally, three nonpolar compounds were analyzed with the GS-AP interface. It was shown that by using the helium and acentonitrile as the sheath gas and carrier phase, respectively, the intense ion signals of M‧+ ions were detected. The results indicated that efficient energy transfer in the ionization processes could be performed in the GS-AP ion source. Finally, it was found that the GS-AP interface was also applicable for the direct analysis of volatiles without sample preparation. The results of the direct analysis of vanilla, volatiles of basil leaf and orange peel were tested.

目錄
中文摘要 …………………………………………………………... i
英文摘要 …………………………………………………………... iii
誌謝 …………………………………………………………... v
表目錄 …………………………………………………………... viii
圖目錄 …………………………………………………………... ix
第一章 緒論…………………………………………………....... 1
1.1 前言……………………………………………………... 1
1.2 LC-MS介面之介紹……………………………………... 2
  1.2.1  電灑法………………………………………………... 2
  1.2.2  大氣壓下化學游離法………………………………... 4
  1.2.3  大氣壓下光游離法…………………………………... 6
1.3 雙離子化源(ESCi)……………………………………… 7
1.4 近來LC-MS介面之發展……………………………….. 10
 1.4.1  液相層析介質放電質譜介面(LC-DBDI-MS)…………………………………………. 11
 1.4.2  液相層析直接即時分析於質譜介面(LC-DBDI-MS)…………………………………………. 14
 1.4.3  放電套頭介面於液相層析質譜(LC-DA-MS)………………………………………..…... 17
1.5 研究動機………………………………………………... 19
1.6 專利檢索……………………………………………..…. 20
第二章 材料與實驗方法………………………………………... 31
2.1 藥品及實驗材料………………………………………... 31
 2.1.1  標準品...……………………………………………… 31
 2.1.2  試劑及材料...………………………………………… 31
2.2 器材及儀器設備.……………………………………….. 32
2.3 標準品儲備溶液配製…………………………………... 33
2.4 真實樣品處理…………………………………………... 33
 2.4.1  尿液處理……………………………………………... 33
 2.4.2  血漿處理……………………………………………... 33
2.5 氣盾式大氣壓下化學游離法介面……………………... 34
 2.5.1  介面製作……………………………………………... 34
 2.5.2  介面架設……………………………………………... 35
2.6 液相層析串聯質譜方法………………………………... 36
 2.6.1  液相層析條件………………………………………... 36
 2.6.2  質譜參數設定………………………………………... 36
第三章 結果與討論……………………………………………... 40
3.1 氣盾式大氣壓下化學游離介面之探討…...…………… 40
3.2 氣盾式大氣壓下化學游離法質譜圖…...…………….... 41
3.3 於液相層析質譜分析介面參數對離子訊號的影響…... 41
 3.3.1  電灑探針位置效應…………………………………... 41
 3.3.2  氣盾式大氣壓下化學游離法探針位置效應………... 42
 3.3.3  放電電流效應………………………………………... 43
 3.3.4  鞘流氣體流量效應…………………………………... 44
 3.3.5  溶劑流速效應………………………………………... 44
3.4 標準品線性測試………………………………………... 46
3.5 長時間穩定性測試…………………………………....... 47
 3.5.1  單離子模式 (AP)…………………………………..... 47
 3.5.2  雙離子模式 (ES及AP)…………………………….... 48
3.6 不同介面靈敏度比較…………………………………... 49
3.7 血漿中之西藥分析……………………………………... 49
3.8 非極性物之分析………………………………………... 50
3.9 直接樣品分析…………………………………………... 54
 3.9.1  香草精標準品質譜圖………………………………... 54
 3.9.2  冰淇淋中之香草精分析……………………………... 55
 3.9.3  九層塔,柑橘皮分析…………………………………. 56
第四章 結論……………………………………………………... 114
參考文獻 …………………………………………………………... 115
英文摘要 …………………………………………………………... 124
簡  歷 …………………………………………………………... 129



1.Williams, J. D.; Burinsky, D. J. “Mass spectrometric analysis of complex mixtures then and now: the impact of linking liquid chromatography and mass spectrometry.” Int. J. Mass spectrom., 2001, 212, 111–133.
2.Andersen, W. C.; Turnipseed, S. B.; Karbiwnyk, C. M.; Clark, S. B.; Madson, M. R.; Gieseker, C. M.; Miller, R. A.; Rummel N. G.; Reimschuessel, R. “Determination and Confirmation of Melamine Residues in Catfish, Trout, Tilapia, Salmon, and Shrimp by Liquid Chromatography with Tandem Mass Spectrometry.” J. Agric. Food Chem., 2008, 56, 4340–4347.
3.Ibanez, M.; Sancho, J. V.; Hernandez F. “Determination of melamine in milk-based products and other food and beverage products by ion-pair liquid chromatography–tandem mass spectrometry.” Anal. Chim. Acta, 2009, 649, 91–97.
4.Malik, A. K.; Blasco, C.; Pico, Y. “Liquid chromatography–mass spectrometry in food safety.” J. Chromatogr. A., 2010, 1217, 4018–4040.
5.He, F.; Hendrickson, C. L.; Marshall, A. G. “Baseline Mass Resolution of Peptide Isobars: A Record for Molecular Mass Resolution.” Anal. Chem., 2001, 73, 647–650.
6.Hughey, C. A.; Rodgers, R. P.; Marshall, A. G. “Resolution of 11,000 Compositionally Distinct Components in a Single Electrospray Ionization FT-ICR Mass Spectrum of Crude Oil.” Anal. Chem., 2002, 74, 4145–4149.
7.Glish, G. L.; Vachet, R. W. “The basics of mass spectrometry in the twenty-first century.” Nat. Rev. Drug Discov., 2003, 2, 140–150.
8.Covey, T. R.; Lee, E. D.; Bruins, A. P.; Henion, J. D. “Liquid chromatography/mass spectrometry.” Anal. Chem., 1986, 58, 1451A–1461A.
9.Zeleny, J. “Instability of Electrified Liquid Surfaces.” J. Phy. Rev., 1917, 10, 1–7.
10.Yamashita, M.; Fenn, J. B. “Electrospray Ion Source.” J. Phy. Chem., 1984, 88, 4451–4459.
11.Yamashita, M.; Fenn, J. B. “Negative Ion Production with the Electrospray Ion Source.” J. Phy. Chem., 1984, 88, 4671–4675.
12.Whitehouse, C. M.; Dreyer, R. N.; Yamashita, M.; Fenn, J. B. “Electrospray Interface for Liquid Cromatographs and Mass Spectrometers.” Anal. Chem., 1985, 57, 675–679.
13.Bruins, A. P.; Covey, T. R.; Henion, J. D. “Ion Splay Interface for Chromatography/Atmospheric Pressure Ionization Mass Spectrometry.” Anal. Chem., 1987, 59, 2642–2646.
14.Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M. et al. “Electrospray Ionization for Mass Spectrometry of Large Biomolecules.” Science, 1989, 246, 64–71.
15.Dole, M.; Mach, L. L.; Hines, R. L.; Mobley, R. C.; Ferguson, L. P.; Alice, M. B. “Molecular Beams of Macroions.” J. Chem. Phys., 1968, 49, 2240−2249.
16.Iribarne J. V.; Thomson B. A. “On the evaporation of small ions from charged droplets.” J. Chem. Phys., 1976, 64, 2287−2294.
17.Horning, E. C.; Horning, M. G.; Carroll, D. I.; Dzidic, I.; Stillwell, R. N. “New Picogram Detection System Based on a Mass Spectrometer with an External Ionization Source at Atmospheric Pressure.” Anal. Chem., 1973, 45, 936–943.
18.Horning, E. C.; Carroll, D. I.; Dzidic, I.; Haegele, K. D.; Horning, M. G.; Stillwell, R. N. “Liquid chromatograph-mass spectrometer-computer analytical systems: A continuous-flow system based on atmospheric pressure ionization mass spectrometry.” J. Chromafogr., 1974, 99, 13–21.
19.Horning, E. C.; Carroll, D. I.; Dzidic, I.; Haegele, K. D.; Horning, M. G.; Stillwell, R. N. “Atmospheric Pressure Ionization (API) Mass Spectrometry. Solvent- Mediated Ionization of Samples Introduced in Solution and in a Liquid Chromatograph Effluent Stream.” J. Chromatogr. Sci., 1974, 12, 725–729.
20.Horning, E. C.; Carroll, D. I.; Dzidic, I.; Stillwell, R. N.; Haegele, K. D. “Atmospheric pressure ionization mass spectrometry. Corona discharge ion source for use in a liquid chromatograph-mass spectrometer-computer analytical system.” Anal. Chem., 1975, 47, 2369–2373.
21.Horning, E. C.; Carroll, D. I.; Dzidic, I.; Stillwell, R. N. “Comparison of positive ions formed in nickel-63 and corona discharge ion sources in atmospheric pressure ionization mass spectrometry.” Anal. Chem., 1976, 48, 1763–1768.
22.Kebarle, P.; Sunner, J.; Nicol, G. “Factors determining relative sensitivity of analytes in positive mode atmospheric pressure ionization mass spectrometry.” Anal. Chem., 1988, 60, 1300–1307.
23.Kebarle, P.; Sunner, J.; Ikonomou, M. G. “Sensitivity enhancements obtained at high temperatures in atmospheric pressure ionization mass spectrometry.” Anal. Chem., 1988, 60, 1308–1313.
24.McEwen, C. N.; Larsen, B. S. “Ionization Mechanisms Related to Negative Ion APPI, APCI, and DART.” J. Am. Soc. Mass Spectrom., 2009, 20, 1518–1521.
25.Terrier, P.; Desmazieres, B.; Tortajada, J.; Buchmann, W. “APCI/APPI for synthetic polymer analysis.” Mass Spectrom. Rev., 2011, 30, 854–874.
26.Driscoll, J. N.; Spaziani, F. F. “PID development gives new per formance levels.” Res./Dev., 1976, 50–54.
27.Driscoll, J. N. “Application of a photoionization detector in gas chromatography.” Am. Lab., 1976, 71–75.
28.Robb, D. B.; Covey, T. R.; Bruins, A. P. “Atmospheric Pressure Photoionization: An Ionization Method for Liquid Chromatography-Mass Spectrometry.” Anal. Chem., 2000, 72, 3653–3659.
29.Kauppila, T. J.; Kuuranne, T.; Meurer, E. C.; Eberlin, M. N.; Kotiaho, T.; Kostiainen, R. “Atmospheric Pressure Photoionization Mass Spectrometry. Ionization Mechanism and the Effect of Solvent on the Ionization of Naphthalenes.” Anal. Chem., 2002, 74, 5470–5479.
30.Kauppila, T. J.; Kostiainen, R.; Bruins, A. P. “Anisole, a new dopant for atmospheric pressure photoionization mass spectrometry of low proton affinity, low ionization energy compounds.” Rapid Commun. Mass Spectrom., 2004, 18, 808–815.
31.Raffaelli, A.; Saba, A. “Atmospheric pressure photoionization mass spectrometry.” Mass Spectrometry Reviews., 2003, 22, 318– 331.
32.Siegel, M. M.; Tabei, K.; Lambert, F.; Candela, L.; Zoltan, B. “Evaluation of a Dual Electrospray Ionization/Atmospheric Pressure Chemical Ionization Source at Low Flow Rates (;50 mL/min) for the Analysis of Both Highly and Weakly Polar Compounds.” J. Am. Soc. Mass Spectrom., 1998, 9, 1196–1203.
33.Gallagher, R. T.; Balogh, M. P.; Davey, P.; Jackson, M. R.; Sinclair, I.; Southern, L. J. “Combined Electrospray Ionization-Atmospheric Pressure Chemical Ionization Source for Use in High-Throughput LC-MS Applications.” Anal. Chem., 2003, 75, 973–977.
34.Yu, K.; Di, L.; Kerns, E.; Li, S. Q.; Alden, P.; Plumb, R. S. “Ultra-performance liquid chromatography/tandem mass spectrometric quantification of structurally diverse drug mixtures using an ESI-APCI multimode ionization source.” Rapid Commun. Mass Spectrom., 2007, 21, 893–902.
35.Fischer, S. M.; Perkins, P. D. “Simultaneous Electrospray and Atmospheric Pressure Chemical Ionization: The Science Behind the Agilent Multimode Ion Source” Agilent Technologies, 2005, 1–20.
36.“Dual Ion Source DUIS-2020 for Simultaneous ESI and APCI Measurement.” SHIMADZU Technical Report, 2009, 35, 1–4.
37.Short, L. C.; Hanold, K. A.; Cai, S. S.; Syage, J. A. “Electrospray ionization/atmospheric pressure photoionization multimode source for low-flow liquid chromatography/mass spectrometric analysis.” Rapid Commun. Mass Spectrom., 2007, 21, 1561–1566.
38.Short, L. C.; Syage, J. A. “Electrospray photoionization (ESPI) liquid chromatography/mass spectrometry for the simultaneous analysis of cyclodextrin and pharmaceuticals and their binding interactions” Rapid Commun. Mass Spectrom., 2008, 22, 541–548.
39.Takats, Z.; Wiseman, J. M.; Gologan, B.; Cooks, R. G. “Mass spectrometry sampling under ambient conditions with desorption electrospray ionization.” Science., 2004, 306, 471–473.
40.Takats, Z.; Cotte-Rodriguez, I.; Talaty, N.; Chen, H.; Cooks, R. G. “Direct, Trace Level Detection of Explosives on Ambient Surfaces by Desorption Electrospray Ionization Mass Spectrometry.” Chem. Commun., 2005, 1950–1952.
41.Chen, H.; Zheng, J.; Zhang, X.; Luo, M.; Wang, Z.; Qiao, X. “Surface Desorption Atmospheric Pressure Chemical Ionization Mass Spectrometry for Direct Ambient Sample Analysis Without Toxic Chemical Contamination.” J. Mass Spectrom., 2007, 42, 1045-1056.
42.Cody, R. B.; Laramee, J. A.; Durst, H. D. “Versatile New Ion Source for the Analysis of Materials in Open Air Under Ambient Conditions. ” Anal. Chem., 2005, 77, 2297-2302.
43.Cody, R. B.; Laramee, J. A.; Nilles, J. M.; Durst, H. D. “Direct Analysis in Real Time (DARTtm) Mass Spectrometry.” JEOL News., 2005, 40, 8-12.
44.Shiea, J.; Huang, M. Z.; Hsu, H. J.; Lee, C. Y.; Yuan, C. H.; Beech, I.; Sunner, J. “Electrospray-Assisted Laser Desorption/Ionization Mass Spectrometry for Direct Ambient Analysis of Solids.” Rapid Commun. Mass Spectrom., 2005, 19, 3701-3704.
45.McEwen, C. N.; McKay, R. G.; Larsen, B. S. “Analysis of Solids, Liquids, and Biological Tissues Using Solids Probe Introduction at Atmospheric Pressure on Commercial LC/MS Instruments.” Anal. Chem., 2005, 77, 7826-7831.
46.McEwen, C.; Gutteridge, S. “Analysis of the Inhibition of the Ergosterol Pathway in Fungi Using the Atmospheric Solids Analysis Probe (ASAP) Method.” J. Am. Soc. Mass Spectrom., 2007, 18, 1274-1278.
47.Na, N.; Zhang, C.; Zhao, M.; Zhang, S.; Yang, C.; Fang, X.; Zhang X. “Direct detection of explosives on solid surfaces by mass spectrometry with an ambient ion source based on dielectric barrier discharge.” J. Mass Spectrom., 2007, 42, 1079–1085.
48.Na, N.; Zhao, M.; Zhang, S.; Yang, C.; Zhang X. “Development of a Dielectric Barrier Discharge Ion Source for Ambient Mass Spectrometry.” J. Am. Soc. Mass Spectrom., 2007, 18, 1859–1862.
49.Cooks, R. G.;Harper, J. D.; Charipar, N. A.; Mulligan, C. C.; Zhang, X.; Ouyang, Z. “Low-Temperature Plasma Probe for Ambient Desorption Ionization.” Anal. Chem., 2008, 80, 9097–9104.
50.Cooks, R. G.; Wiley, J. S.; Garcı’a-Reyes, J. F.; Harper, J. D.; Charipar, N. A.; Ouyang, Z. “Screening of agrochemicals in foodstuffs using low-temperature plasma (LTP) ambient ionization mass spectrometry.” Analyst, 2010, 135, 971–979.
51.Chen, L. C.; Hashimoto, Y.; Furuya, H.; Takekawa, K.; Kubota, T.; Hiraoka, K. “Rapid detection of drugs in biofluids using atmospheric pressure chemi/chemical ionization mass spectrometry.” Rapid Commun. Mass Spectrom., 2009, 23, 333–339.
52.Chen, L. C.; Yu,Z.; Furuya, H.; Hashimoto, Y.; Takekawa, K.; Suzuki, H.; Ariyada, O.; Hiraoka, K. “Development of ambient sampling chemi/chemical ion source with dielectric barrier discharge.” J. Mass. Spectrom., 2010, 45, 861–869.
53.Chen, L. C.; Yuab, Z.; Hiraoka, K. “Vapor phase detection of hydrogen peroxide with ambient sampling chemi/chemical ionization mass spectrometry.” Anal. Methods, 2010, 2, 897–900.
54.Hiraoka, K.; Ninomiy, S.; Chen, L. C.; Iwama, T.; Mandal, M. K.; Suzuki, H.; Ariyada, O.; Furuya, H.; Takekawa, K. “Development of double cylindrical dielectric barrier discharge ion source.”Analyst., 2011, 136, 1210–1215.
55.Wang, H.; Sun, W.; Zhang, J.; Yang, X.; Lin, T.; Ding, L. “Desorption corona beam ionization source for mass spectrometry.” Analyst, 2010, 135, 688–695.
56.Li, X.; Wang, H,; Sun, W.; Ding, L. “Desorption Corona Beam Ionization Coupled with a Poly(dimethylsiloxane) Substrate: Broadening the Application of Ambient Ionization for Water Samples.” Anal. Chem., 2010, 82, 9188–9193.
57.Yang, Z.; Attygalle, A. B. “Aliphatic Hydrocarbon Spectra by Helium Ionization Mass Spectrometry (HIMS) on a Modified Atmospheric-Pressure Source Designed for Electrospray Ionization.” J. Am. Soc. Mass. Spectrom., 2011, 22, 1395–1402.
58.Hayen, H.; Michels, A.; Franzke, J. “Dielectric Barrier Discharge Ionization for Liquid Chromatography/Mass Spectrometry.” Anal. Chem., 2009, 81, 10239–10245.
59.Hiraoka, K.; Fujimaki, S.; Kambara, S.; Furuya, H.; Okazaki, S. “Atmospheric-pressure Penning ionization mass spectrometry.” Rapid Commun. Mass Spectrom., 2004, 18, 2323–2330.
60.Furuya, H.; Fujimaki, S.; Kambara, S.; Suzuki, S.; Hashimoto, Y.; Okazaki, S.; Wada, A.; Beech, I. B.; Sunner, J.; Hiraoka, K. “Ion/molecule reactions in the orifice-skimmer region of an atmospheric pressure Penning ionization mass spectrometer.” Rapid Commun. Mass Spectrom., 2005, 19, 2433–2442.
61.Hiraoka, K.; Furuya, H.; Kambara, S.; Suzuki, S.; Hashimoto, Y.; Takamizawa, A. “Atmospheric-pressure Penning ionization of aliphatic hydrocarbons.” Rapid Commun. Mass Spectrom., 2006, 20, 3213–3222.
62.Klampfl, C. W.; Eberherr, W.; Buchberger, W.; Hertsens, R. “Investigations on the Coupling of High-Performance Liquid Chromatography to Direct Analysis in Real Time Mass Spectrometry.” Anal. Chem., 2010, 82, 5792-5796.
63.Klampfl, C. W.; Beismanna, S.; Buchberger, W.; Hertsens, R. “High-performance liquid chromatography coupled to direct analysis in real time mass spectrometry: Investigations on gradient elution and influence of complex matrices on signal intensities.” J. Chromatogr. A., 2011, 1218, 5180– 5186.
64.Sheen, J. F.; Ho, Y. H. “A discharge adaptor interface for use in liquid chromatography/mass spectrometry.” Rapid Commun. Mass Spectrom., 2011, 25, 3675–3682.
65.Vora, D. N.; Kadav, A. A. “Development and Validation of a Simultaneous HPLC Method for Estimation of Bisoprolol Fumarate and Amlodipine Besylate from Tablets.” Indian J Pharm Sci., 2008, 70, 542–546.
66.Leung, G. N.W.; Leung, D. K. K.; Wan, T. S. M.; Wong, C. H. F. “High throughput screening of sub-ppb levels of basic drugs in equine plasma by liquid chromatography–tandem mass spectrometry.” J. Chromatogr. A., 2007, 1156, 271–279.
67.Maurer, H. H.; Tenberken, O.; Kratzsch, C.; Weber, A. A.; Peters, F. T. “Screening for library-assisted identification and fully validated quantification of 22 beta-blockers in blood plasma by liquid chromatography–mass spectrometry with atmospheric pressure chemical ionization.” J. Chromatogr. A., 2004, 1058, 169–181.
68.Volkel, W.; Kiranoglu, M.; Fromme, H. “Determination of free and total bisphenol A in human urine to assess daily uptake as a basis for a valid risk assessment.” Toxicol. Lett., 2008, 179, 155–162.
69.Kao, T. H.; Chen,S.; Chen,C. J.; Huang,C. W.; Chen, B. H. “Evaluation of Analysis of Polycyclic Aromatic Hydrocarbons by the QuEChERS Method and Gas Chromatography−Mass Spectrometry and Their Formation in Poultry Meat As Affected by Marinating and Frying.” J. Agric. Food. Chem., 2012, 60, 1380–1389.
70.尚雪波; 張菊華; 單楊; 潘兆平; 劉陽 “GC-MS法分析雜柑皮中揮發性精油成分.”食品科學, 2010, 31, 175–178.
71.沈振峯; 何國榮 “負離子大氣壓離子化法質譜儀於藥物之分析.”國立台灣大學化學所博士論文, 2005.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top